Menu Close

Author: Tinku Tara

find-0-pi-4-cos-5-t-cos-5t-dt-

Question Number 137003 by Mathspace last updated on 28/Mar/21 $${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{cos}^{\mathrm{5}} {t}}{{cos}\left(\mathrm{5}{t}\right)}{dt} \\ $$ Answered by bobhans last updated on 29/Mar/21 $$\mathrm{cos}\:\left(\mathrm{5t}\right)=\mathrm{cos}\:^{\mathrm{5}} \mathrm{t}−\mathrm{10sin}\:^{\mathrm{2}} \mathrm{t}\:\mathrm{cos}\:^{\mathrm{3}}…

Given-a-b-and-c-is-real-number-satisfy-a-b-c-4-and-ab-ac-bc-3-The-value-of-3c-2-

Question Number 136996 by EDWIN88 last updated on 28/Mar/21 $$\mathrm{Given}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{c}\:\mathrm{is}\:\mathrm{real}\:\mathrm{number}\:\mathrm{satisfy} \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}\:=\:\mathrm{4}\:\mathrm{and}\:\mathrm{ab}+\mathrm{ac}+\mathrm{bc}\:=\:\mathrm{3}\:.\:\mathrm{The}\:\mathrm{value} \\ $$$$\mathrm{of}\:\lceil\:\mathrm{3c}+\mathrm{2}\:\rceil\:=\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

I-m-curious-about-your-response-to-this-Where-is-the-mistake-0-0-100-100-100-100-0-0-10-2-10-2-10-10-10-0-0-10-10-10-10-10-10-10-0-0-10-10-10-0-0-20-10

Question Number 5926 by FilupSmith last updated on 05/Jun/16 $$\mathrm{I}'\mathrm{m}\:\mathrm{curious}\:\mathrm{about}\:\mathrm{your}\:\mathrm{response}\:\mathrm{to}\:\mathrm{this} \\ $$$$ \\ $$$$\mathrm{Where}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mistake}: \\ $$$$\frac{\mathrm{0}}{\mathrm{0}}=\frac{\mathrm{100}−\mathrm{100}}{\mathrm{100}−\mathrm{100}} \\ $$$$\frac{\mathrm{0}}{\mathrm{0}}=\frac{\mathrm{10}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} }{\mathrm{10}\left(\mathrm{10}−\mathrm{10}\right)} \\ $$$$\frac{\mathrm{0}}{\mathrm{0}}=\frac{\left(\mathrm{10}−\mathrm{10}\right)\left(\mathrm{10}+\mathrm{10}\right)}{\mathrm{10}\left(\mathrm{10}−\mathrm{10}\right)} \\ $$$$\frac{\mathrm{0}}{\mathrm{0}}=\frac{\left(\mathrm{10}+\mathrm{10}\right)}{\mathrm{10}} \\…

Solve-for-x-and-y-2-x-3-y-31-equation-i-3-x-2-y-17-equation-ii-please-help-

Question Number 5924 by sanusihammed last updated on 05/Jun/16 $${Solve}\:{for}\:{x}\:{and}\:{y} \\ $$$$ \\ $$$$\mathrm{2}^{{x}} \:+\:\mathrm{3}^{{y}} \:=\:\mathrm{31}\:\:\:…………….\:{equation}\:\left({i}\right) \\ $$$$\mathrm{3}^{{x}\:} +\:\mathrm{2}^{{y}} \:=\:\mathrm{17}\:\:…………….\:{equation}\:\left({ii}\right) \\ $$$$ \\ $$$${please}\:{help}. \\…

cos-7x-cos-8x-1-2cos-5x-dx-

Question Number 136992 by liberty last updated on 28/Mar/21 $$\ell\:=\:\int\:\frac{\mathrm{cos}\:\mathrm{7x}−\mathrm{cos}\:\mathrm{8x}}{\mathrm{1}+\mathrm{2cos}\:\mathrm{5x}}\:\mathrm{dx}\:=? \\ $$ Answered by EDWIN88 last updated on 28/Mar/21 $$\:\ell\:=\:\int\:\frac{\mathrm{cos}\:\mathrm{7x}−\mathrm{cos}\:\mathrm{8x}}{\mathrm{1}+\mathrm{2cos}\:\mathrm{5x}}\:\mathrm{dx} \\ $$$$\mathrm{Simplify}\:\mathrm{the}\:\mathrm{integrand}\:\mathrm{by}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{formula} \\ $$$$\frac{\mathrm{cos}\:\mathrm{7x}−\mathrm{cos}\:\mathrm{8x}}{\mathrm{1}+\mathrm{2cos}\:\mathrm{5x}}\:=\:\frac{\mathrm{e}^{\mathrm{i7x}} +\mathrm{e}^{−\mathrm{i7x}}…

1-1-1-3-2-3-4-1-1-3-3-7-2-2-3-2-4-2-1-2-5-7-10-2-3-3-3-4-3-1-3-

Question Number 136995 by Dwaipayan Shikari last updated on 28/Mar/21 $$\mathrm{1}−\left(\frac{\mathrm{1}.\mathrm{1}.\mathrm{3}}{\mathrm{2}.\mathrm{3}.\mathrm{4}}\right)\frac{\mathrm{1}}{\mathrm{1}!}+\left(\frac{\mathrm{3}.\mathrm{3}.\mathrm{7}}{\mathrm{2}^{\mathrm{2}} .\mathrm{3}^{\mathrm{2}} .\mathrm{4}^{\mathrm{2}} }\right)\frac{\mathrm{1}}{\mathrm{2}!}−\left(\frac{\mathrm{5}.\mathrm{7}.\mathrm{10}}{\mathrm{2}^{\mathrm{3}} .\mathrm{3}^{\mathrm{3}} .\mathrm{4}^{\mathrm{3}} }\right)\frac{\mathrm{1}}{\mathrm{3}!}−…. \\ $$ Terms of Service Privacy Policy Contact:…

Does-1-i-1-1-i-converge-2-i-1-1-i-converge-

Question Number 5921 by FilupSmith last updated on 05/Jun/16 $$\mathrm{Does}:\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\Gamma\left(\frac{\mathrm{1}}{{i}}\right)\:\:\mathrm{converge}? \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\prod}}\Gamma\left(\frac{\mathrm{1}}{{i}}\right)\:\:\mathrm{converge}? \\ $$ Commented by Yozzii last updated…