Question Number 137007 by SLVR last updated on 28/Mar/21 Commented by SLVR last updated on 28/Mar/21 $${kindly}\:{send}\:{me}\:{the}\:{solution} \\ $$ Commented by mr W last updated…
Question Number 137001 by Mathspace last updated on 28/Mar/21 $${calculate}\:\:\int_{\mathrm{3}} ^{\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{5}} \left({x}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 137003 by Mathspace last updated on 28/Mar/21 $${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{cos}^{\mathrm{5}} {t}}{{cos}\left(\mathrm{5}{t}\right)}{dt} \\ $$ Answered by bobhans last updated on 29/Mar/21 $$\mathrm{cos}\:\left(\mathrm{5t}\right)=\mathrm{cos}\:^{\mathrm{5}} \mathrm{t}−\mathrm{10sin}\:^{\mathrm{2}} \mathrm{t}\:\mathrm{cos}\:^{\mathrm{3}}…
Question Number 136996 by EDWIN88 last updated on 28/Mar/21 $$\mathrm{Given}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{c}\:\mathrm{is}\:\mathrm{real}\:\mathrm{number}\:\mathrm{satisfy} \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}\:=\:\mathrm{4}\:\mathrm{and}\:\mathrm{ab}+\mathrm{ac}+\mathrm{bc}\:=\:\mathrm{3}\:.\:\mathrm{The}\:\mathrm{value} \\ $$$$\mathrm{of}\:\lceil\:\mathrm{3c}+\mathrm{2}\:\rceil\:=\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 5926 by FilupSmith last updated on 05/Jun/16 $$\mathrm{I}'\mathrm{m}\:\mathrm{curious}\:\mathrm{about}\:\mathrm{your}\:\mathrm{response}\:\mathrm{to}\:\mathrm{this} \\ $$$$ \\ $$$$\mathrm{Where}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mistake}: \\ $$$$\frac{\mathrm{0}}{\mathrm{0}}=\frac{\mathrm{100}−\mathrm{100}}{\mathrm{100}−\mathrm{100}} \\ $$$$\frac{\mathrm{0}}{\mathrm{0}}=\frac{\mathrm{10}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} }{\mathrm{10}\left(\mathrm{10}−\mathrm{10}\right)} \\ $$$$\frac{\mathrm{0}}{\mathrm{0}}=\frac{\left(\mathrm{10}−\mathrm{10}\right)\left(\mathrm{10}+\mathrm{10}\right)}{\mathrm{10}\left(\mathrm{10}−\mathrm{10}\right)} \\ $$$$\frac{\mathrm{0}}{\mathrm{0}}=\frac{\left(\mathrm{10}+\mathrm{10}\right)}{\mathrm{10}} \\…
Question Number 136999 by mnjuly1970 last updated on 28/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:……{advanced}\:\:……\:\:\:{calculus}…. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} {ln}\left({x}\right).{sin}\left({x}\right).{e}^{−{x}} {dx}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$ Answered by mnjuly1970 last…
Question Number 5924 by sanusihammed last updated on 05/Jun/16 $${Solve}\:{for}\:{x}\:{and}\:{y} \\ $$$$ \\ $$$$\mathrm{2}^{{x}} \:+\:\mathrm{3}^{{y}} \:=\:\mathrm{31}\:\:\:…………….\:{equation}\:\left({i}\right) \\ $$$$\mathrm{3}^{{x}\:} +\:\mathrm{2}^{{y}} \:=\:\mathrm{17}\:\:…………….\:{equation}\:\left({ii}\right) \\ $$$$ \\ $$$${please}\:{help}. \\…
Question Number 136992 by liberty last updated on 28/Mar/21 $$\ell\:=\:\int\:\frac{\mathrm{cos}\:\mathrm{7x}−\mathrm{cos}\:\mathrm{8x}}{\mathrm{1}+\mathrm{2cos}\:\mathrm{5x}}\:\mathrm{dx}\:=? \\ $$ Answered by EDWIN88 last updated on 28/Mar/21 $$\:\ell\:=\:\int\:\frac{\mathrm{cos}\:\mathrm{7x}−\mathrm{cos}\:\mathrm{8x}}{\mathrm{1}+\mathrm{2cos}\:\mathrm{5x}}\:\mathrm{dx} \\ $$$$\mathrm{Simplify}\:\mathrm{the}\:\mathrm{integrand}\:\mathrm{by}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{formula} \\ $$$$\frac{\mathrm{cos}\:\mathrm{7x}−\mathrm{cos}\:\mathrm{8x}}{\mathrm{1}+\mathrm{2cos}\:\mathrm{5x}}\:=\:\frac{\mathrm{e}^{\mathrm{i7x}} +\mathrm{e}^{−\mathrm{i7x}}…
Question Number 136995 by Dwaipayan Shikari last updated on 28/Mar/21 $$\mathrm{1}−\left(\frac{\mathrm{1}.\mathrm{1}.\mathrm{3}}{\mathrm{2}.\mathrm{3}.\mathrm{4}}\right)\frac{\mathrm{1}}{\mathrm{1}!}+\left(\frac{\mathrm{3}.\mathrm{3}.\mathrm{7}}{\mathrm{2}^{\mathrm{2}} .\mathrm{3}^{\mathrm{2}} .\mathrm{4}^{\mathrm{2}} }\right)\frac{\mathrm{1}}{\mathrm{2}!}−\left(\frac{\mathrm{5}.\mathrm{7}.\mathrm{10}}{\mathrm{2}^{\mathrm{3}} .\mathrm{3}^{\mathrm{3}} .\mathrm{4}^{\mathrm{3}} }\right)\frac{\mathrm{1}}{\mathrm{3}!}−…. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 5921 by FilupSmith last updated on 05/Jun/16 $$\mathrm{Does}:\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\Gamma\left(\frac{\mathrm{1}}{{i}}\right)\:\:\mathrm{converge}? \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\prod}}\Gamma\left(\frac{\mathrm{1}}{{i}}\right)\:\:\mathrm{converge}? \\ $$ Commented by Yozzii last updated…