Question Number 136948 by leena12345 last updated on 28/Mar/21 $$\int\frac{\sqrt{\mathrm{4}+{x}^{\mathrm{2}} }}{{x}}{dx} \\ $$ Answered by Olaf last updated on 28/Mar/21 $$\mathrm{F}\left({x}\right)\:=\:\int\frac{\sqrt{\mathrm{4}+{x}^{\mathrm{2}} }}{{x}}\:{dx} \\ $$$$\mathrm{F}\left({u}\right)\:\overset{{x}=\mathrm{2sh}{u}} {=}\:\:\:\:\int\frac{\sqrt{\mathrm{4}+\mathrm{4sh}^{\mathrm{2}}…
Question Number 5878 by gourav~ last updated on 03/Jun/16 $$\int\sqrt{\frac{{a}−{x}}{{a}+{x}}}{dx} \\ $$$${please}\:{help}…….= \\ $$ Answered by Yozzii last updated on 03/Jun/16 $${Let}\:{I}=\int\sqrt{\frac{{a}−{x}}{{a}+{x}}}{dx}. \\ $$$$\frac{{a}−{x}}{{a}+{x}}=\frac{{a}^{\mathrm{2}} −{x}^{\mathrm{2}}…
Question Number 5877 by sanusihammed last updated on 03/Jun/16 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 136950 by BHOOPENDRA last updated on 28/Mar/21 Answered by Olaf last updated on 28/Mar/21 $$\overset{\wedge} {{f}}\:^{{c}} \left(\nu\right)\:=\:\int_{−\infty} ^{+\infty} {f}\left({s}\right)\mathrm{cos}\left(\mathrm{2}\pi\nu{s}\right){ds}\:=\:\mathrm{Re}\overset{\wedge} {{f}}\left(\nu\right) \\ $$$$\mathcal{F}\left(\frac{\mathrm{1}}{{s}}\right)\:=\:−{i}\pi\mathrm{sign}\left(\nu\right) \\…
Question Number 5876 by sanusihammed last updated on 03/Jun/16 Commented by Yozzii last updated on 04/Jun/16 $${max}\left({P}\right)\approx\mathrm{0}.\mathrm{45}{m} \\ $$$${P}=\mathrm{0}.\mathrm{4}{cos}\theta+\mathrm{0}.\mathrm{2}{sin}\theta \\ $$ Commented by sanusihammed last…
Question Number 71410 by TawaTawa last updated on 15/Oct/19 Answered by MJS last updated on 15/Oct/19 $${A}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{{p}}\\{\mathrm{0}}\end{pmatrix}\:\:{C}=\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix}\:\:{D}=\begin{pmatrix}{\mathrm{0}}\\{{q}}\end{pmatrix} \\ $$$${DC}:\:{y}={q} \\ $$$${AC}:\:{y}=\frac{{q}}{{p}}{x} \\ $$$${BE}:\:{y}=−\frac{{p}}{{q}}{x}+\frac{{p}^{\mathrm{2}} }{{q}} \\…
Question Number 5874 by sanusihammed last updated on 02/Jun/16 $${Prove}\:{the}\:{identity}.\: \\ $$$${cosh}^{−\mathrm{1}} \left({x}\right)\:=\:{sinh}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$ \\ $$$${please}\:{help}. \\ $$ Answered by Yozzii last updated…
Question Number 5873 by sanusihammed last updated on 02/Jun/16 $${Differentiate}\:\:\:{cosh}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:\frac{{dy}}{{dx}}.\:\:\:{if}\:{the}\:{given}\:{function}\:{is}\: \\ $$$${y}\:=\:{sinh}^{−\mathrm{1}} \left[{coth}\left({x}^{\mathrm{2}} \right)\right] \\ $$$$ \\ $$$${Please}\:{help}. \\ $$ Terms of Service…
Question Number 71406 by mind is power last updated on 15/Oct/19 $$\mathrm{Hello}\: \\ $$$$\mathrm{Solve}\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} }−\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{x}\left(\mathrm{x}−\mathrm{1}\right)}+\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{1}}=\mathrm{0} \\ $$ Commented by Prithwish sen last updated on 15/Oct/19…
Question Number 5871 by sanusihammed last updated on 02/Jun/16 $${Derive}\:{the}\:{volume}\:{of}\:{two}\:{intersecting}\:{cylinder}\:{of}\:{equal}\:{radii} \\ $$$$ \\ $$$${please}\:{help}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com