Menu Close

Author: Tinku Tara

The-largest-interval-for-which-x-12-x-9-x-4-x-1-gt-0-is-a-4-lt-x-0-b-0-lt-x-lt-1-c-100-lt-x-lt-100-d-lt-x-lt-

Question Number 75013 by necxxx last updated on 05/Dec/19 $${The}\:{largest}\:{interval}\:{for}\:{which} \\ $$$${x}^{\mathrm{12}} −{x}^{\mathrm{9}} +{x}^{\mathrm{4}} −{x}+\mathrm{1}>\mathrm{0}\:{is} \\ $$$$\left({a}\right)−\mathrm{4}<{x}\leqslant\mathrm{0} \\ $$$$\left({b}\right)\mathrm{0}<{x}<\mathrm{1} \\ $$$$\left({c}\right)−\mathrm{100}<{x}<\mathrm{100} \\ $$$$\left({d}\right)−\infty<{x}<\infty \\ $$…

prove-by-mathematical-induction-a-a-d-a-2d-a-n-1-d-1-2-n-2a-n-1-d-

Question Number 9471 by tawakalitu last updated on 09/Dec/16 $$\mathrm{prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction} \\ $$$$\mathrm{a}\:+\:\left(\mathrm{a}\:+\:\mathrm{d}\right)\:+\:\left(\mathrm{a}\:+\:\mathrm{2d}\right)\:+\:…\:+\:\left[\mathrm{a}\:+\:\left(\mathrm{n}\:−\:\mathrm{1}\right)\mathrm{d}\right]\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{n}\left[\mathrm{2a}\:+\:\left(\mathrm{n}\:−\:\mathrm{1}\right)\mathrm{d}\right]\: \\ $$ Answered by mrW last updated on 10/Dec/16 $$\mathrm{for}\:\mathrm{n}=\mathrm{1}: \\ $$$$\mathrm{a}\overset{!} {=}\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{1}×\left[\mathrm{2a}+\left(\mathrm{1}−\mathrm{1}\right)\mathrm{d}\right]=\mathrm{a}…

prove-by-mathematical-induction-1-1-3-1-2-5-1-3-7-1-2n-1-2n-1-n-2n-1-

Question Number 9470 by tawakalitu last updated on 09/Dec/16 $$\mathrm{prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction}. \\ $$$$\frac{\mathrm{1}}{\mathrm{1}.\mathrm{3}}\:+\:\frac{\mathrm{1}}{\mathrm{2}.\mathrm{5}}\:+\:\frac{\mathrm{1}}{\mathrm{3}.\mathrm{7}}\:+\:…\:+\:\frac{\mathrm{1}}{\left(\mathrm{2n}\:−\:\mathrm{1}\right)\left(\mathrm{2n}\:+\:\mathrm{1}\right)}\:=\:\frac{\mathrm{n}}{\mathrm{2n}\:+\:\mathrm{1}} \\ $$ Commented by mrW last updated on 10/Dec/16 $$\mathrm{please}\:\mathrm{check}\:\mathrm{the}\:\mathrm{question}! \\ $$$$\mathrm{should}\:\mathrm{it}\:\mathrm{be}\:\mathrm{following}? \\…

x-2-1-x-2-dx-

Question Number 9467 by tawakalitu last updated on 09/Dec/16 $$\int\mathrm{x}^{\mathrm{2}} \left(\sqrt{\mathrm{1}\:−\:\mathrm{x}^{\mathrm{2}} }\right)\:\mathrm{dx} \\ $$ Answered by mrW last updated on 09/Dec/16 $$\mathrm{x}=\mathrm{sin}\:\mathrm{t} \\ $$$$\mathrm{dx}=\mathrm{cos}\:\mathrm{t}\:\mathrm{dt} \\…

A-block-of-mass-0-2kg-rests-on-an-incline-plane-of-30-to-the-horizontal-with-a-velocity-of-12m-s-If-the-coefficient-of-sliding-friction-is-0-16-i-determine-how-far-up-the-plane-the-mass-travels-bef

Question Number 75001 by necxxx last updated on 05/Dec/19 $${A}\:{block}\:{of}\:{mass}\:\mathrm{0}.\mathrm{2}{kg}\:{rests}\:{on}\:{an}\:{incline} \\ $$$${plane}\:{of}\:\mathrm{30}°\:{to}\:{the}\:{horizontal}\:{with}\:{a} \\ $$$${velocity}\:{of}\:\mathrm{12}{m}/{s}.{If}\:{the}\:{coefficient}\:{of} \\ $$$${sliding}\:{friction}\:{is}\:\mathrm{0}.\mathrm{16}, \\ $$$$\left({i}\right){determine}\:{how}\:{far}\:{up}\:{the}\:{plane}\:{the} \\ $$$${mass}\:{travels}\:{before}\:{stoping}. \\ $$$$\left({ii}\right){if}\:{the}\:{block}\:{returns},{what}\:{is}\:{the} \\ $$$${velocity}\:{of}\:{the}\:{block}\:{at}\:{the}\:{bottom}\:{of}\:{the} \\…

A-triangle-is-inscribed-in-a-circle-the-vertices-of-the-triangle-divided-the-circumference-of-the-circle-into-three-area-of-length-6-8-10-units-then-the-area-of-triangle-is-equal-to-a-64-3-

Question Number 140533 by liberty last updated on 09/May/21 $$\mathrm{A}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{inscribed}\:\mathrm{in}\:\mathrm{a}\:\mathrm{circle}. \\ $$$$\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{divided} \\ $$$$\mathrm{the}\:\mathrm{circumference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\mathrm{into}\:\mathrm{three}\:\mathrm{area}\:\mathrm{of}\:\mathrm{length}\:\mathrm{6},\mathrm{8},\mathrm{10} \\ $$$$\mathrm{units}\:\mathrm{then}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{triangle} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to}… \\ $$$$\left(\mathrm{a}\right)\:\frac{\mathrm{64}\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{3}}+\mathrm{1}\right)}{\pi^{\mathrm{2}} }\:\:\:\:\left(\mathrm{c}\right)\:\frac{\mathrm{36}\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)}{\pi^{\mathrm{2}} } \\…