Menu Close

Author: Tinku Tara

Question-71216

Question Number 71216 by TawaTawa last updated on 13/Oct/19 Answered by mind is power last updated on 13/Oct/19 $$\Sigma\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{x}}{\mathrm{n}!}=\Sigma\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}!}+\mathrm{x}\Sigma\frac{\mathrm{1}}{\mathrm{n}!} \\ $$$$\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}!}=\mathrm{1}+\sum_{\mathrm{n}\geqslant\mathrm{2}}…

Given-system-equation-x-2-3xy-y-2-1-0-x-3-y-3-7-0-has-solution-x-1-y-1-amp-x-2-y-2-for-x-y-R-Find-the-value-of-x-1-2-y-2-x-2-2-y-1-

Question Number 136749 by EDWIN88 last updated on 25/Mar/21 $$\mathrm{Given}\:\mathrm{system}\:\mathrm{equation}\: \\ $$$$\:\begin{cases}{\mathrm{x}^{\mathrm{2}} +\mathrm{3xy}+\mathrm{y}^{\mathrm{2}} +\mathrm{1}=\mathrm{0}}\\{\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} −\mathrm{7}=\mathrm{0}}\end{cases}\:\mathrm{has}\:\mathrm{solution}\: \\ $$$$\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{y}_{\mathrm{1}} \right)\:\&\left(\mathrm{x}_{\mathrm{2}} ,\mathrm{y}_{\mathrm{2}} \right)\:\mathrm{for}\:\mathrm{x},\mathrm{y}\in\mathbb{R}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}}…

Question-136741

Question Number 136741 by JulioCesar last updated on 25/Mar/21 Answered by Dwaipayan Shikari last updated on 25/Mar/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}!−\mathrm{1}}{{x}}=\frac{\Gamma\left({x}+\mathrm{1}\right)−\mathrm{1}}{{x}}=\frac{\Gamma'\left({x}+\mathrm{1}\right)}{\mathrm{1}}=\Gamma'\left(\mathrm{1}\right)=−\gamma \\ $$ Terms of Service Privacy…

Let-p-q-r-are-positive-real-numbers-0-lt-r-lt-min-p-q-Prove-that-p-r-q-r-min-pq-r-2-p-q-2r-

Question Number 71206 by naka3546 last updated on 13/Oct/19 $${Let}\:\:{p},{q},{r}\:\:{are}\:\:{positive}\:\:{real}\:\:{numbers}\:. \\ $$$$\mathrm{0}\:<\:{r}\:<\:{min}\left\{{p},{q}\right\}. \\ $$$${Prove}\:\:{that} \\ $$$$\:\:\:\:\:\sqrt{{p}−{r}}\:+\:\sqrt{{q}−{r}}\:\:\leqslant\:\:{min}\left\{\sqrt{\frac{{pq}}{{r}}}\:,\:\sqrt{\mathrm{2}\left({p}+{q}\:−\:\mathrm{2}{r}\right)}\:\right\} \\ $$ Answered by mind is power last updated…