Menu Close

Author: Tinku Tara

Question-71115

Question Number 71115 by TawaTawa last updated on 11/Oct/19 Answered by mind is power last updated on 11/Oct/19 $$\mathrm{A}.\left(\mathrm{999994}\right)……\left(\mathrm{1000002}\right)=\mathrm{1}\left(\mathrm{1000003}\right) \\ $$$$\mathrm{used}\:\mathrm{wilson}\:\mathrm{theorem}\:\left(\mathrm{p}−\mathrm{1}\right)!=\mathrm{1}\left(\mathrm{p}\right) \\ $$$$\Rightarrow \\ $$$$\Rightarrow\mathrm{A}\left(−\mathrm{1}\right).\left(−\mathrm{2}\right)……\left(−\mathrm{9}\right)=\mathrm{1}\left(\mathrm{1000003}\right)…

Question-136651

Question Number 136651 by mhabs last updated on 24/Mar/21 Answered by Ñï= last updated on 24/Mar/21 $$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{1}}{\mathrm{1}+\left({a}\mathrm{tan}\:{x}\right)^{\mathrm{2}} }{dx}\overset{{t}=\mathrm{tan}\:{x}} {=}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+{a}^{\mathrm{2}} {t}^{\mathrm{2}} }\centerdot\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}}…

1-1-2-1-1-2-1-2-2-1-3-2-1-1-2-2-2-1-2-1-2-gt-0-Or-K-r-0-r-2-2-2-1-1-2-

Question Number 136645 by Dwaipayan Shikari last updated on 24/Mar/21 $$\frac{\mathrm{1}}{\mathrm{1}+\frac{\eta^{\mathrm{2}} }{\mathrm{1}+\frac{\left(\eta+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{1}+\frac{\left(\eta+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{1}+\frac{\left(\eta+\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{1}+..}\:\:}}}}=\frac{\mathrm{1}}{\mathrm{2}}\psi\left(\frac{\eta+\mathrm{2}}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\psi\left(\frac{\eta+\mathrm{1}}{\mathrm{2}}\right)\:\:\left(\eta>\mathrm{0}\right) \\ $$$${Or}\:\:\underset{{r}=\mathrm{0}} {\overset{\infty} {\boldsymbol{\mathrm{K}}}}\left(\eta+{r}\right)^{\mathrm{2}} =\frac{\mathrm{2}}{\psi\left(\frac{\eta}{\mathrm{2}}+\mathrm{1}\right)−\psi\left(\frac{\eta+\mathrm{1}}{\mathrm{2}}\right)} \\ $$ Terms of Service…

0-1-ln-x-2-1-x-2-dx-f-a-0-1-log-ax-2-1-x-2-dx-f-a-0-1-x-2-ax-2-1-x-2-dx-1-a-0-1-dx-x-2-1-a-2-a-a-tan-1-x-

Question Number 136644 by mnjuly1970 last updated on 24/Mar/21 $$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{log}\left({ax}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:\:{f}\:'\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}}…

if-x-y-3a-b-y-z-3b-c-z-x-3c-a-then-prove-that-x-y-z-a-b-c-ax-by-cz-a-2-b-2-c-2-

Question Number 136640 by jahar last updated on 24/Mar/21 $${if}\:\frac{{x}+{y}}{\mathrm{3}{a}−{b}}=\:\frac{{y}+{z}}{\mathrm{3}{b}−{c}}=\frac{{z}+{x}}{\mathrm{3}{c}−{a}}\:{then}\: \\ $$$${prove}\:{that}\:,\frac{{x}+{y}+{z}}{{a}+{b}+{c}}\:=\:\:\:\frac{{ax}+{by}+{cz}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com