Question Number 71117 by peter frank last updated on 11/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 5580 by Rasheed Soomro last updated on 21/May/16 $$\mathrm{Given}\:\mathrm{that}\:{p}^{{n}} =\mathrm{16}{p},\:\mathrm{express}\:\mathrm{log}_{\mathrm{2}} {p}\: \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n}\:. \\ $$ Answered by FilupSmith last updated on 21/May/16 $${p}^{{n}}…
Question Number 136649 by liberty last updated on 24/Mar/21 $$ \\ $$What the value of series (4/2) + (4.7/2.6) + (4.7.10/2.6.10) + (4.7.10.13/2.6.10.14) +…? Commented…
Question Number 71114 by TawaTawa last updated on 11/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 5579 by Rasheed Soomro last updated on 21/May/16 $$\mathrm{Without}\:\mathrm{using}\:\mathrm{a}\:\mathrm{calculator},\:\mathrm{evaluate} \\ $$$$\left(\mathrm{log}\:\mathrm{5}\right)^{\mathrm{2}} +\mathrm{log}\:\mathrm{2}\:\mathrm{log}\:\mathrm{50} \\ $$ Answered by FilupSmith last updated on 21/May/16 $$\mathrm{log}\:{x}\:=\:\mathrm{log}_{\mathrm{10}} {x}…
Question Number 71115 by TawaTawa last updated on 11/Oct/19 Answered by mind is power last updated on 11/Oct/19 $$\mathrm{A}.\left(\mathrm{999994}\right)……\left(\mathrm{1000002}\right)=\mathrm{1}\left(\mathrm{1000003}\right) \\ $$$$\mathrm{used}\:\mathrm{wilson}\:\mathrm{theorem}\:\left(\mathrm{p}−\mathrm{1}\right)!=\mathrm{1}\left(\mathrm{p}\right) \\ $$$$\Rightarrow \\ $$$$\Rightarrow\mathrm{A}\left(−\mathrm{1}\right).\left(−\mathrm{2}\right)……\left(−\mathrm{9}\right)=\mathrm{1}\left(\mathrm{1000003}\right)…
Question Number 136651 by mhabs last updated on 24/Mar/21 Answered by Ñï= last updated on 24/Mar/21 $$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{1}}{\mathrm{1}+\left({a}\mathrm{tan}\:{x}\right)^{\mathrm{2}} }{dx}\overset{{t}=\mathrm{tan}\:{x}} {=}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+{a}^{\mathrm{2}} {t}^{\mathrm{2}} }\centerdot\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}}…
Question Number 136645 by Dwaipayan Shikari last updated on 24/Mar/21 $$\frac{\mathrm{1}}{\mathrm{1}+\frac{\eta^{\mathrm{2}} }{\mathrm{1}+\frac{\left(\eta+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{1}+\frac{\left(\eta+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{1}+\frac{\left(\eta+\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{1}+..}\:\:}}}}=\frac{\mathrm{1}}{\mathrm{2}}\psi\left(\frac{\eta+\mathrm{2}}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\psi\left(\frac{\eta+\mathrm{1}}{\mathrm{2}}\right)\:\:\left(\eta>\mathrm{0}\right) \\ $$$${Or}\:\:\underset{{r}=\mathrm{0}} {\overset{\infty} {\boldsymbol{\mathrm{K}}}}\left(\eta+{r}\right)^{\mathrm{2}} =\frac{\mathrm{2}}{\psi\left(\frac{\eta}{\mathrm{2}}+\mathrm{1}\right)−\psi\left(\frac{\eta+\mathrm{1}}{\mathrm{2}}\right)} \\ $$ Terms of Service…
Question Number 136644 by mnjuly1970 last updated on 24/Mar/21 $$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{log}\left({ax}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:\:{f}\:'\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}}…
Question Number 136640 by jahar last updated on 24/Mar/21 $${if}\:\frac{{x}+{y}}{\mathrm{3}{a}−{b}}=\:\frac{{y}+{z}}{\mathrm{3}{b}−{c}}=\frac{{z}+{x}}{\mathrm{3}{c}−{a}}\:{then}\: \\ $$$${prove}\:{that}\:,\frac{{x}+{y}+{z}}{{a}+{b}+{c}}\:=\:\:\:\frac{{ax}+{by}+{cz}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com