Question Number 136489 by liberty last updated on 22/Mar/21 $$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{8}}+\frac{\mathrm{6}}{\mathrm{16}}+\frac{\mathrm{11}}{\mathrm{32}}+\frac{\mathrm{20}}{\mathrm{64}}+\frac{\mathrm{37}}{\mathrm{128}}+…\:=? \\ $$ Answered by Olaf last updated on 22/Mar/21 $$\mathrm{Tribonacci}\:\mathrm{numbers}\:: \\ $$$$\mathrm{T}_{\mathrm{0}} \:=\:\mathrm{0},\:\mathrm{T}_{\mathrm{1}} \:=\:\mathrm{1},\:\mathrm{T}_{\mathrm{2}} \:=\:\mathrm{0}…
Question Number 5417 by FilupSmith last updated on 14/May/16 $$\mathrm{Prove},\:\mathrm{or}\:\mathrm{disprove},\:\mathrm{that}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\mathrm{has}\:\mathrm{the}\:\mathrm{largest}\:{Perimiter}\:\mathrm{over}\:\mathrm{all} \\ $$$$\mathrm{natural}\:\mathrm{shapes}\:\mathrm{that}\:\mathrm{have}\:\mathrm{area}\:{A} \\ $$ Commented by Rasheed Soomro last updated on 14/May/16 $$\mathrm{I}\:\mathrm{think}\:\mathrm{that}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{has}\:\mathrm{the}\:\mathrm{smallest}…
Question Number 5414 by FilupSmith last updated on 14/May/16 $$\mathrm{How}\:\mathrm{do}\:\mathrm{we}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}/\mathrm{rectangle} \\ $$$$\mathrm{is}\:\mathrm{at}\:\mathrm{its}\:\mathrm{maximum}\:\mathrm{when}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{equal}. \\ $$$$ \\ $$$$\mathrm{So},\:\mathrm{if}\:\mathrm{we}\:\mathrm{have}\:\mathrm{a}\:\mathrm{rectangle}\:\mathrm{of}\:\mathrm{sides}\:{a}\:\mathrm{and}\:{b}, \\ $$$$\mathrm{how}\:\mathrm{do}\:\mathrm{we}\:\mathrm{show}\:\mathrm{its}\:\mathrm{maximized}\:\mathrm{when}\:{a}={b}? \\ $$ Answered by 123456 last updated…
Question Number 136487 by physicstutes last updated on 22/Mar/21 Commented by physicstutes last updated on 22/Mar/21 $$\mathrm{The}\:\mathrm{figure}\:\mathrm{above}\:\mathrm{shows}\:\mathrm{a}\:\mathrm{system}\:\mathrm{of}\:\mathrm{two}\:\mathrm{slaps}\:\mathrm{with}\:\mathrm{a}\:\mathrm{space}\:\mathrm{inbetween}\:\mathrm{them} \\ $$$$,\mathrm{given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{respective}\:\mathrm{thermal}\:\mathrm{conductivities}\:\mathrm{of}\:\mathrm{the}\:\mathrm{slap}−\mathrm{space}−\mathrm{slap}\:\mathrm{system} \\ $$$$\mathrm{is}\:{k}_{\mathrm{1}} ,{k}_{\mathrm{2}} \:\mathrm{and}\:{k}_{\mathrm{3}} .\:\mathrm{and}\:\mathrm{thier}\:\mathrm{lenght}\:\left(\mathrm{or}\:\mathrm{thickness}\right)\:\mathrm{are}\:{y}_{\mathrm{1}} ,{y}_{\mathrm{2}}…
Question Number 136486 by mohammad17 last updated on 22/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 70949 by ajfour last updated on 10/Oct/19 Commented by ajfour last updated on 10/Oct/19 $${For}\:{coordinate}\:{geometry}\:{experts}! \\ $$ Commented by ajfour last updated on…
Question Number 136481 by BHOOPENDRA last updated on 22/Mar/21 $$\int_{\mathrm{0}} ^{\frac{\mathrm{50}\pi}{\mathrm{3}}} \mid{sinx}\mid{dx} \\ $$ Answered by MJS_new last updated on 22/Mar/21 $$\underset{\mathrm{0}} {\overset{\mathrm{50}\pi/\mathrm{3}} {\int}}\mid\mathrm{sin}\:{x}\mid{dx}=\mathrm{33}\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}}…
Question Number 5410 by FilupSmith last updated on 14/May/16 Commented by FilupSmith last updated on 14/May/16 $$\mathrm{An}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{sides}\:\mathrm{of} \\ $$$$\mathrm{length}\:{L},\:\mathrm{contains}\:\mathrm{a}\:\mathrm{rectangle}\:\mathrm{with} \\ $$$$\mathrm{lengths}\:{a}\:\mathrm{and}\:{b}. \\ $$$$ \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{size}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rectangle}?…
Question Number 136482 by rexford last updated on 22/Mar/21 $${f}\left({x}\right)=\int_{−\Pi/\mathrm{4}} ^{\Pi\int/\mathrm{4}} {e}^{{xtant}} {dt} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 136476 by Ar Brandon last updated on 22/Mar/21 $$\left(\mathrm{a}\right)\:\mathrm{Let}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\left(\mathrm{x}−\frac{\alpha}{\mathrm{x}}\right)^{\mathrm{2}} } \mathrm{dx} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{it}\:\mathrm{is}\:\mathrm{legitimate}\:\mathrm{to}\:\mathrm{take}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{I}\left(\alpha\right)\:\mathrm{and}\:\mathrm{also}\:\mathrm{I}'\left(\alpha\right)= \\ $$$$\mathrm{0}.\:\mathrm{Then}\:\mathrm{show}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\left(\alpha\right)=\frac{\sqrt{\pi}}{\mathrm{2}}. \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Use}\:\left(\mathrm{a}\right)\:\mathrm{to}\:\mathrm{prove}…