Menu Close

Author: Tinku Tara

the-sides-of-a-triangle-are-5-7-10-cm-1-find-the-largest-equilateral-triangle-which-circumscribes-the-given-triangle-2-find-the-smallest-equilateral-triangle-which-inscribes-the-given-triangle-

Question Number 136293 by mr W last updated on 20/Mar/21 $${the}\:{sides}\:{of}\:{a}\:{triangle}\:{are}\:\mathrm{5},\mathrm{7},\mathrm{10}\:{cm}. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{largest}\:{equilateral}\:{triangle} \\ $$$${which}\:{circumscribes}\:{the}\:{given}\:{triangle}. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{smallest}\:{equilateral}\:{triangle} \\ $$$${which}\:{inscribes}\:{the}\:{given}\:{triangle}. \\ $$ Commented by mr W…

nice-calculus-prove-1-0-pi-2-tan-1-tan-x-tan-x-dx-pi-2-log-2-2-2-pi-pi-e-sin-x-cos-x-cos-sin-x-e-x-e-sin-x-dx-pi-

Question Number 136295 by mnjuly1970 last updated on 20/Mar/21 $$\:\:\:\:\:\:….{nice}\:\:{calculus}… \\ $$$${prove}\::: \\ $$$$\mathrm{1}\:::\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{tan}^{−\mathrm{1}} \left(\sqrt{{tan}\left({x}\right)}\:\right)}{{tan}\left({x}\right)}{dx}=\frac{\pi}{\mathrm{2}}{log}\left(\mathrm{2}+\sqrt{\mathrm{2}}\:\right) \\ $$$$\mathrm{2}::\Omega=\int_{−\pi} ^{\:\pi} \frac{{e}^{\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)} {cos}\left({sin}\left({x}\right)\right)}{{e}^{{x}} +{e}^{{sin}\left({x}\right)} }{dx}=\pi \\…

I-cannot-understand-all-those-who-post-questions-like-x-x-2-cos-log-x-x-2pii-1-x-dx-and-a-few-minutes-later-5-3-2-1-9-4-I-mean-are-you-serious-

Question Number 70756 by MJS last updated on 07/Oct/19 $$\mathrm{I}\:\mathrm{cannot}\:\mathrm{understand}\:\mathrm{all}\:\mathrm{those}\:\mathrm{who}\:\mathrm{post} \\ $$$$\mathrm{questions}\:\mathrm{like}\:\int{x}^{\Gamma\left({x}^{\mathrm{2}} \right)} \mathrm{cos}\:\sqrt[{{x}}]{\mathrm{log}_{\varpi+{x}} \:{x}^{\mathrm{2}\pi\mathrm{i}} }{dx}=? \\ $$$$\mathrm{and}\:\mathrm{a}\:\mathrm{few}\:\mathrm{minutes}\:\mathrm{later}\:\frac{\mathrm{5}}{\mathrm{3}}×\frac{\mathrm{2}+\mathrm{1}}{\mathrm{9}−\mathrm{4}}=? \\ $$$$\mathrm{I}\:\mathrm{mean},\:\mathrm{are}\:\mathrm{you}\:\mathrm{serious}? \\ $$ Commented by Rio…

Question-70757

Question Number 70757 by MJS last updated on 08/Oct/19 $$. \\ $$ Commented by TawaTawa last updated on 07/Oct/19 $$\mathrm{Sir},\:\mathrm{help}\:\mathrm{me}\:\mathrm{with}\:\mathrm{the}\:\mathrm{question}\:\mathrm{number}\:\mathrm{of}\:\mathrm{a}\:\mathrm{question}\:\mathrm{you}\:\mathrm{solved} \\ $$$$\mathrm{sometimes}. \\ $$$$ \\…

Let-p-j-represent-the-j-th-prime-number-Now-define-the-number-n-whose-decimal-representation-is-written-out-in-terms-of-p-j-j-N-in-the-following-way-n-0-p-1-p-2-p-3-p-4-p-5-p-j-p-j-1-p-j-

Question Number 5216 by Yozzii last updated on 01/May/16 $${Let}\:{p}_{{j}} \:{represent}\:{the}\:{j}−{th}\:{prime}\:{number}. \\ $$$${Now},\:{define}\:{the}\:{number}\:{n}\:{whose} \\ $$$${decimal}\:{representation}\:{is}\:{written}\:{out} \\ $$$${in}\:{terms}\:{of}\:{p}_{{j}} \:\left({j}\in\mathbb{N}\right)\:{in}\:{the}\:{following} \\ $$$${way}: \\ $$$${n}=\mathrm{0}.{p}_{\mathrm{1}} {p}_{\mathrm{2}} {p}_{\mathrm{3}} {p}_{\mathrm{4}}…

Question-136283

Question Number 136283 by JulioCesar last updated on 20/Mar/21 Answered by Ar Brandon last updated on 20/Mar/21 $$\int\mathrm{e}^{\mathrm{g}\left(\mathrm{x}\right)} \left[\mathrm{f}\left(\mathrm{x}\right)\mathrm{g}'\left(\mathrm{x}\right)+\mathrm{f}\:'\left(\mathrm{x}\right)\right]\mathrm{dx}=\mathrm{e}^{\mathrm{g}\left(\mathrm{x}\right)} \mathrm{f}\left(\mathrm{x}\right) \\ $$ Terms of Service…