Menu Close

Author: Tinku Tara

Find-the-value-of-2023-mod-2027-

Question Number 5168 by Yozzii last updated on 24/Apr/16 $${Find}\:{the}\:{value}\:{of}\:\mathrm{2023}!\:\left({mod}\:\mathrm{2027}\right). \\ $$ Commented by prakash jain last updated on 27/Apr/16 $$\mathrm{If}\:\mathrm{you}\:\mathrm{find}\:\mathrm{an}\:\mathrm{answer},\:\mathrm{please}\:\mathrm{do}\:\mathrm{post}\:\mathrm{it}.\:\mathrm{I} \\ $$$$\mathrm{have}\:\mathrm{not}\:\mathrm{yet}\:\mathrm{been}\:\mathrm{able}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}. \\ $$…

why-1-1-2-1-4-1-8-2-

Question Number 5158 by 1771727373 last updated on 24/Apr/16 $${why} \\ $$$$\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{1}}{\mathrm{8}}\:+\:………..\:=\:\mathrm{2} \\ $$$$ \\ $$ Answered by FilupSmith last updated on 24/Apr/16 $$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+…={S} \\…

1-2-3-4-S-2-4-6-8-10-2S-S-2S-1-3-5-7-2S-S-lim-x-n-n-1-2-lim-x-n-2-S-1-2-3-4-

Question Number 5157 by 1771727373 last updated on 24/Apr/16 $$\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+……..={S} \\ $$$$\mathrm{2}+\mathrm{4}+\mathrm{6}+\mathrm{8}+\mathrm{10}+……..=\mathrm{2}{S} \\ $$$${S}\supset\mathrm{2}{S} \\ $$$$\mathrm{1}+\mathrm{3}+\mathrm{5}+\mathrm{7}+…………+\left(\mathrm{2}{S}\right)={S} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left\{\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}\right\}=+\infty \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left\{{n}^{\mathrm{2}} \right\}=+\infty \\ $$$$\left(+\infty\right)+\left(+\infty\right)={S}=\infty…