Question Number 70659 by aliesam last updated on 06/Oct/19 $${find}\:{the}\:{range}\:{algrbraically} \\ $$$$ \\ $$$${f}\left({x}\right)=\sqrt{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$ Answered by MJS last updated on 06/Oct/19 $$\sqrt{{x}^{\mathrm{2}}…
Question Number 5122 by FilupSmith last updated on 16/Apr/16 $$\mathrm{Lets}\:\mathrm{say}\:\mathrm{person}\:\mathrm{1}\:\mathrm{punches}\:\mathrm{a}\:\mathrm{bag}\:\mathrm{and}\: \\ $$$$\mathrm{the}\:\mathrm{punch}\:\mathrm{is}\:\mathrm{fast}\:\mathrm{from}\:\mathrm{start}\:\mathrm{to}\:\mathrm{finish}. \\ $$$$ \\ $$$$\mathrm{Lets}\:\mathrm{say}\:\mathrm{person}\:\mathrm{2}\:\mathrm{does}\:\mathrm{a}\:\mathrm{punch}\:\mathrm{but} \\ $$$$\mathrm{only}\:\mathrm{the}\:\mathrm{final}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{punch}\:\mathrm{is}\:\mathrm{fast}. \\ $$$$ \\ $$$$\mathrm{How}\:\mathrm{will}\:\mathrm{the}\:\mathrm{forces}\:\mathrm{differ}\:\mathrm{in}\:\mathrm{these}\:\mathrm{punches}? \\ $$$$ \\…
Question Number 5121 by Yozzii last updated on 15/Apr/16 $${What}\:{solutions}\:{x}\in\mathbb{R}\:{exist}\:{for}\:{the}\: \\ $$$${equation}\:\left({tan}^{−\mathrm{1}} {x}\right)\left({cot}^{−\mathrm{1}} {x}\right)={n} \\ $$$${where}\:{n}\in\mathbb{Z}? \\ $$ Answered by prakash jain last updated on…
Question Number 5119 by sanusihammed last updated on 14/Apr/16 Commented by 123456 last updated on 15/Apr/16 $${x}=\sqrt{\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${x}^{\mathrm{2}} =\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${x}=\sqrt{{a}}+\sqrt{{b}}\wedge{a}>\mathrm{0}\wedge{b}>\mathrm{0} \\ $$$${x}^{\mathrm{2}} ={a}+{b}+\mathrm{2}\sqrt{{ab}}…
Question Number 136188 by mohammad17 last updated on 19/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 5117 by FilupSmith last updated on 14/Apr/16 $$\mathrm{I}\:\mathrm{have}\:\mathrm{a}\:\mathrm{question}.\:\mathrm{I}\:\mathrm{am}\:\mathrm{unsure}\:\mathrm{how}\:\mathrm{this} \\ $$$$\mathrm{is}\:\mathrm{done}\:\mathrm{because}\:\mathrm{I}\:\mathrm{have}\:\mathrm{never}\:\mathrm{learnt}\:\mathrm{it}. \\ $$$$ \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{determine}\:\mathrm{the}\:\mathrm{line}\:\mathrm{of}\:\mathrm{best}\:\mathrm{fit}? \\ $$ Commented by Yozzii last updated on 14/Apr/16…
Question Number 70653 by naka3546 last updated on 06/Oct/19 $$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\:\left(\mathrm{sin}\:{x}\:−\:\mathrm{cos}\:{x}\right)^{\mathrm{tan}\:{x}} \:\:=\:\:… \\ $$ Commented by kaivan.ahmadi last updated on 06/Oct/19 $${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \left({sinx}−{cosx}−\mathrm{1}\right){tanx}= \\ $$$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}}…
Question Number 5115 by Yozzii last updated on 14/Apr/16 $${Given}\:{the}\:{space}\:{curve}\:\boldsymbol{{r}}=\boldsymbol{{r}}\left({t}\right),\:{show} \\ $$$${that}\:{its}\:{torsion}\:\tau\:{is}\:{given}\:{by} \\ $$$$\tau=\frac{\overset{.} {\boldsymbol{{r}}}\bullet\overset{..} {\boldsymbol{{r}}}×\overset{…} {\boldsymbol{{r}}}}{\mid\overset{.} {\boldsymbol{{r}}}×\overset{..} {\boldsymbol{{r}}}\mid^{\mathrm{2}} }.\:{It}\:{may}\:{help}\:{to}\:{know}\:{that}\:{its} \\ $$$${curvature}\:{is}\:{numerically}\:{given}\:{by}\:\kappa=\frac{\mid\overset{.} {\boldsymbol{{r}}}×\overset{..} {\boldsymbol{{r}}}\mid}{\mid\overset{.} {\boldsymbol{{r}}}\mid^{\mathrm{3}}…
Question Number 70651 by sadimuhmud 136 last updated on 06/Oct/19 Commented by Prithwish sen last updated on 06/Oct/19 $$\mathrm{Let}\:\sqrt{\mathrm{x}}\:=\:\mathrm{u}\:\:\Rightarrow\:\mathrm{d}\left(\sqrt{\mathrm{x}}\right)=\mathrm{du} \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{2}}{\:\sqrt{\mathrm{a}}}} \mathrm{e}^{\sqrt{\mathrm{a}}\mathrm{u}} \mathrm{du}\:\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{a}}}\:\left[\boldsymbol{\mathrm{e}}^{\sqrt{\boldsymbol{\mathrm{a}}}\boldsymbol{\mathrm{u}}} \right]_{\mathrm{0}}…
Question Number 5113 by FilupSmith last updated on 14/Apr/16 $$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{find}\:\mathrm{the}: \\ $$$$\left(\mathrm{1}\right)\:\:\mathrm{Focal}\:\mathrm{point} \\ $$$$\left(\mathrm{2}\right)\:\:\mathrm{Directrix} \\ $$$$\mathrm{for}\:{y}={ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$ \\ $$$$\mathrm{For}\:\mathrm{simplicity},\:\mathrm{lets}\:\mathrm{assume}\:\mathrm{it}\:\mathrm{goes}\:\mathrm{throigh} \\ $$$$\mathrm{point}\:\left(\mathrm{0},\:\mathrm{0}\right). \\ $$…