Question Number 70583 by Raphael last updated on 05/Oct/19 $$\mathrm{Given}\:\mathrm{that}\:\mathrm{y}=\frac{\mathrm{4}}{\:\sqrt{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)}}\:\mathrm{show}\:\mathrm{that}\:\mathrm{2}\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\frac{\mathrm{dy}}{\mathrm{dx}}=−\mathrm{3x}^{\mathrm{2}} \mathrm{y}. \\ $$ Answered by MJS last updated on 05/Oct/19 $${dy}=−\frac{\mathrm{6}{x}^{\mathrm{2}} }{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}}…
Question Number 136109 by physicstutes last updated on 18/Mar/21 $$\mathrm{A}\:\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{on}\:\mathrm{the}\:\mathrm{inside}\:\mathrm{surface}\:\mathrm{of}\:\:\mathrm{fixed}\:\mathrm{spherical}\:\mathrm{bolw}\:\mathrm{of} \\ $$$$\mathrm{radius}\:\mathrm{2}\:\mathrm{m}.\:\mathrm{It}\:\mathrm{describes}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{circle}\:\mathrm{at}\:\:\mathrm{distance}\:\mathrm{of}\:\frac{\mathrm{6}}{\mathrm{5}}\:\mathrm{m}\:\mathrm{below} \\ $$$$\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bowl}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\left.\left(\mathrm{b}\right)\right)\mathrm{the}\:\mathrm{period}\:\mathrm{of}\:\mathrm{the}\:\mathrm{motion} \\ $$ Answered by mr W last…
Question Number 5039 by Rasheed Soomro last updated on 05/Apr/16 $$\mathrm{log}_{\left(\frac{\mathrm{x}}{\mathrm{y}}\right)} \left(\frac{\mathrm{y}}{\mathrm{x}}\right)=? \\ $$ Answered by LMTV last updated on 05/Apr/16 $$\left(\frac{{x}}{{y}}\right)^{?} =\frac{{y}}{{x}} \\ $$$$?=−\mathrm{1}…
Question Number 136110 by physicstutes last updated on 18/Mar/21 $$\mathrm{An}\:\mathrm{engine}\:\mathrm{is}\:\mathrm{pumping}\:\mathrm{water}\:\mathrm{from}\:\mathrm{a}\:\mathrm{well}\:\mathrm{25m}\:\mathrm{deep}.\:\mathrm{It}\:\mathrm{discharges} \\ $$$$\mathrm{0}.\mathrm{4}\:\mathrm{m}^{\mathrm{3}} \:\mathrm{of}\:\mathrm{water}\:\mathrm{each}\:\mathrm{second}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{12}\:\mathrm{ms}^{−\mathrm{1}} .\:\mathrm{Find}\:\mathrm{the}\: \\ $$$$\mathrm{power}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pump}\:\mathrm{given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{density}\:\mathrm{of}\:\mathrm{water}\:\mathrm{is}\:\mathrm{1000}\:\mathrm{kg}\:\mathrm{m}^{−\mathrm{3}} . \\ $$$$\mathrm{take}\:\boldsymbol{\mathrm{g}}\:=\:\mathrm{10}\:\mathrm{ms}^{−\mathrm{2}} \\ $$ Commented by mr W…
Question Number 136105 by I want to learn more last updated on 18/Mar/21 Commented by mr W last updated on 18/Mar/21 $${book}\:{is}\:{wrong}! \\ $$$${just}\:{think}:\:{can}\:{a}\:{man}\:{throw}\:{a}\:{stone} \\…
Question Number 136104 by Dwaipayan Shikari last updated on 18/Mar/21 $$\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\pi}{\mathrm{1}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{2}\pi}{\mathrm{2}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{3}\pi}{\mathrm{3}^{\mathrm{2}} }+…={a}\pi \\ $$$${Find}\:{a} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 70571 by ahmadshahhimat775@gmail.com last updated on 05/Oct/19 Commented by mathmax by abdo last updated on 05/Oct/19 $$\left.\exists\:{c}\:\in\right]\mathrm{3},\mathrm{3}+{h}\left[\:/\int_{\mathrm{3}} ^{{h}+\mathrm{3}} \:\frac{\mathrm{5}{dx}}{{x}^{\mathrm{3}} \:+\mathrm{7}}\:=\frac{\mathrm{5}}{{c}^{\mathrm{3}} \:+\mathrm{7}}\:\int_{\mathrm{3}} ^{{h}+\mathrm{3}} {dx}=\frac{\mathrm{5}{h}}{{c}^{\mathrm{3}}…
Question Number 70568 by Rio Michael last updated on 05/Oct/19 Commented by Rio Michael last updated on 05/Oct/19 $${please}\:{help}. \\ $$$$ \\ $$$${find}\:{from}\:{the}\:{above}\:{circuit},\: \\ $$$$…
Question Number 5032 by gourav~ last updated on 04/Apr/16 $$\int\frac{{ax}+{b}}{\left({cx}+{d}\right)^{\mathrm{2}} }{dx}\:=? \\ $$$$ \\ $$ Answered by Yozzii last updated on 04/Apr/16 $${Let}\:{u}={cx}+{d}\Rightarrow{du}={cdx}\Rightarrow{c}^{−\mathrm{1}} {du}={dx}. \\…
Question Number 136100 by SOMEDAVONG last updated on 18/Mar/21 $$\mathrm{I}.\int\mathrm{xe}^{\mathrm{sinx}} \mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com