Menu Close

Author: Tinku Tara

explicite-f-t-0-e-t-1-x-2-1-x-2-dx-with-t-0-

Question Number 136033 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{explicite}\:\mathrm{f}\left(\mathrm{t}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{t}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\mathrm{with}\:\mathrm{t}\geqslant\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact:…

proof-the-existence-of-x-1-x-2-x-n-integr-natural-1-x-1-1-x-2-1-x-n-1-with-x-i-x-j-for-i-j-

Question Number 136032 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{proof}\:\mathrm{the}\:\mathrm{existence}\:\mathrm{of}\:\:\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} ,….\mathrm{x}_{\mathrm{n}} \:\mathrm{integr}\:\mathrm{natural}\:/ \\ $$$$\frac{\mathrm{1}}{\mathrm{x}_{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{x}_{\mathrm{2}} }+…+\frac{\mathrm{1}}{\mathrm{x}_{\mathrm{n}} }\:=\mathrm{1}\:\:\mathrm{with}\:\mathrm{x}_{\mathrm{i}} \neq\mathrm{x}_{\mathrm{j}} \:\mathrm{for}\:\mathrm{i}\neq\mathrm{j} \\ $$ Terms…

Question-70499

Question Number 70499 by Sayantan chakraborty last updated on 04/Oct/19 Commented by Tinku Tara last updated on 05/Oct/19 $$\mathrm{Hi}\:\mathrm{Sayantan} \\ $$$$\mathrm{Ability}\:\mathrm{to}\:\mathrm{draw}\:\mathrm{shapes}\:\mathrm{is}\:\mathrm{a}\:\mathrm{reaonable} \\ $$$$\mathrm{and}\:\mathrm{we}\:\mathrm{will}\:\mathrm{work}\:\mathrm{on}\:\mathrm{it}. \\ $$$$\mathrm{We}\:\mathrm{gave}\:\mathrm{out}\:\mathrm{work}\:\mathrm{for}\:\mathrm{third}\:\mathrm{party}\:\mathrm{for}…

is-possible-to-proof-that-f-x-e-cx-obey-f-x-y-f-x-f-y-using-e-x-n-0-x-n-n-

Question Number 4962 by 123456 last updated on 27/Mar/16 $$\mathrm{is}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{proof}\:\mathrm{that} \\ $$$${f}\left({x}\right)={e}^{{cx}} \\ $$$$\mathrm{obey} \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right) \\ $$$$\mathrm{using} \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{{x}^{{n}} }{{n}!} \\…

calculate-lim-x-0-ln-x-sinx-x-2-

Question Number 136029 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{calculate}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{ln}\left(\frac{\mathrm{x}}{\mathrm{sinx}}\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$ Answered by liberty last updated on 18/Mar/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:{x}−\mathrm{ln}\:\mathrm{sin}\:{x}}{{x}^{\mathrm{2}}…