Question Number 4758 by madscientist last updated on 05/Mar/16 $$\int_{−\infty} ^{\infty} {e}^{−{x}^{\mathrm{2}\:} } \:{dx}\:=\:\sqrt{\pi\:} \\ $$$${is}\:{this}\:{true},\:{if}\:{so}\:{how}? \\ $$ Answered by Yozzii last updated on 05/Mar/16…
Question Number 135824 by Khakie last updated on 16/Mar/21 $$\int_{\mathrm{0}} ^{{a}} \:\frac{{x}^{\mathrm{4}} \:\:{e}^{{x}} }{\left({e}^{{x}} \:−\mathrm{1}\right)^{\mathrm{2}} }\:{dt} \\ $$$$ \\ $$$${please}\:{solve}\:{this}… \\ $$ Commented by mathmax…
Question Number 135827 by otchereabdullai@gmail.com last updated on 16/Mar/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{leaving}\:\mathrm{the}\: \\ $$$$\mathrm{answer}\:\mathrm{in}\:\pi. \\ $$$$\left.\mathrm{i}\right)\:\mathrm{if}\:\mathrm{it}\:\mathrm{area}\:\mathrm{is}\:\mathrm{doubled}\:\mathrm{it}\:\mathrm{circumference} \\ $$$$ \\ $$$$\left.\mathrm{ii}\right)\:\mathrm{if}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{it}\:\mathrm{cermi}-\mathrm{circle}\:\mathrm{is}\: \\ $$$$\mathrm{numerically}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{length}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{quater}\:\mathrm{circle} \\ $$$$ \\…
Question Number 4753 by FilupSmith last updated on 05/Mar/16 $$\ast\:\:\ast\:\:\ast\:\:\ast\:\:\ast \\ $$$$\ast\:\:\ast\:\:\ast\:\:\ast\:\:\ast \\ $$$$\ast\:\:\ast\:\:\ast\:\:\ast\:\:\ast \\ $$$$ \\ $$$$\mathrm{Selecting}\:\mathrm{a}\:\mathrm{random}\:\mathrm{star}\:\mathrm{is}\:\mathrm{a}\:\:\frac{\mathrm{1}}{\mathrm{15}}\:\mathrm{chance} \\ $$$$\mathrm{at}\:\mathrm{random}.\:\mathrm{Lets}\:\mathrm{say}\:\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{pick} \\ $$$$\mathrm{a}\:\mathrm{second}\:\mathrm{random}\:\mathrm{star}\:\mathrm{that}\:\mathrm{is}\:\mathrm{next}\:\mathrm{to}\:\mathrm{it}. \\ $$$${Either}\:{above},\:{below},\:{or}\:{to}\:{the}\:{side}. \\…
Question Number 4752 by Yozzii last updated on 04/Mar/16 $${For}\:\mathrm{0}\leqslant{x},{y},{z}\leqslant\mathrm{1}\:{solve}\:{the}\:{equation} \\ $$$$\frac{{x}}{\mathrm{1}+{y}+{zx}}+\frac{{y}}{\mathrm{1}+{z}+{xy}}+\frac{{z}}{\mathrm{1}+{x}+{yz}}=\frac{\mathrm{3}}{{x}+{y}+{z}}. \\ $$ Commented by prakash jain last updated on 05/Mar/16 $$\mathrm{trivial}\:\mathrm{solution}\:\mathrm{is}\:{x}={y}={z}=\mathrm{1} \\ $$$$\mathrm{Other}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{be}\:\mathrm{worked}.…
Question Number 135821 by mnjuly1970 last updated on 16/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:….{nice}\:\:\:…..\:\:\:{calculus}….\: \\ $$$$\:\:\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}−\sqrt{\mathrm{1}−{x}}}\right){dx}=\mathrm{4}\left(\mathrm{1}−\zeta\left(\mathrm{2}\right)\right) \\ $$$$ \\ $$ Answered by mathmax by abdo…
Question Number 4751 by Yozzii last updated on 04/Mar/16 $${Find}\:{all}\:{functions}\:{h}:\mathbb{Z}\rightarrow\mathbb{Z}\:{such}\:{that} \\ $$$${h}\left({x}+{y}\right)+{h}\left({xy}\right)={h}\left({x}\right){h}\left({y}\right)+\mathrm{1} \\ $$$${for}\:{all}\:{x},{y}\in\mathbb{Z}. \\ $$ Commented by prakash jain last updated on 06/Mar/16 $${y}=\mathrm{0}…
Question Number 135820 by Ar Brandon last updated on 16/Mar/21 $$\mathrm{Let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} {e}^{−{t}^{\mathrm{2}} } {dt}\:, \\ $$$$\mathrm{Prove}\:\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} +{f}\left({x}\right)} {dx}={e}^{\frac{\sqrt{\pi}}{\mathrm{2}}} −\mathrm{1}. \\ $$ Answered…
Question Number 70287 by MJS last updated on 02/Oct/19 $$\mathrm{I}\:\mathrm{wanted}\:\mathrm{to}\:\mathrm{say}\:\mathrm{this}\:\mathrm{earlier}… \\ $$$$\mathrm{I}\:\mathrm{love}\:\mathrm{mathematics}\:\mathrm{and}\:\mathrm{I}\:\mathrm{also}\:\mathrm{love}\:\mathrm{people}. \\ $$$$\mathrm{But}\:\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{here}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{same}\:\mathrm{old}\:\mathrm{boring} \\ $$$$\mathrm{problems}\:\mathrm{copied}\:\mathrm{from}\:\mathrm{facebook}\:\mathrm{or}\:\mathrm{whatsapp} \\ $$$$\mathrm{or}\:\mathrm{other}\:\mathrm{platforms}.\:\mathrm{They}\:\mathrm{are}\:\mathrm{not}\:\mathrm{interesting} \\ $$$$\mathrm{at}\:\mathrm{all}.\:\mathrm{They}\:\mathrm{have}\:\mathrm{been}\:\mathrm{coming}\:\mathrm{in}\:\mathrm{as}\:\mathrm{a}\:\mathrm{kind} \\ $$$$\mathrm{of}\:\mathrm{competition},\:\mathrm{or}\:\mathrm{simply}\:\mathrm{to}\:\mathrm{brag},\:\mathrm{they}'\mathrm{ve} \\ $$$$\mathrm{been}\:\mathrm{traded}\:\mathrm{from}\:\mathrm{one}\:\mathrm{non}−\mathrm{mathematician} \\…
Question Number 4750 by 123456 last updated on 04/Mar/16 $${f}_{{n}} \left({x}\right)=\begin{cases}{\mathrm{1}\:\:\:\:{n}=\mathrm{1}}\\{\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)…\left(\mathrm{1}−{x}^{{n}} \right)}{\left(\mathrm{1}−\mathrm{2}{x}\right)…\left(\mathrm{1}−{nx}\right)}\:\:\:\:{n}\in\mathbb{N},{n}>\mathrm{1}}\end{cases} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{f}_{{n}} \left({x}\right)=? \\ $$$${n}>\mathrm{1},{f}\left({x}\right)=\mathrm{0},{x}=? \\ $$ Commented by prakash jain…