Menu Close

Author: Tinku Tara

Find-the-area-of-a-circle-leaving-the-answer-in-pi-i-if-it-area-is-doubled-it-circumference-ii-if-the-area-of-it-cermi-circle-is-numerically-equal-to-the-arc-length-of-a-quater-circle-iii-if-th

Question Number 135827 by otchereabdullai@gmail.com last updated on 16/Mar/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{leaving}\:\mathrm{the}\: \\ $$$$\mathrm{answer}\:\mathrm{in}\:\pi. \\ $$$$\left.\mathrm{i}\right)\:\mathrm{if}\:\mathrm{it}\:\mathrm{area}\:\mathrm{is}\:\mathrm{doubled}\:\mathrm{it}\:\mathrm{circumference} \\ $$$$ \\ $$$$\left.\mathrm{ii}\right)\:\mathrm{if}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{it}\:\mathrm{cermi}-\mathrm{circle}\:\mathrm{is}\: \\ $$$$\mathrm{numerically}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{length}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{quater}\:\mathrm{circle} \\ $$$$ \\…

Selecting-a-random-star-is-a-1-15-chance-at-random-Lets-say-you-have-to-pick-a-second-random-star-that-is-next-to-it-Either-above-below-or-to-the-si

Question Number 4753 by FilupSmith last updated on 05/Mar/16 $$\ast\:\:\ast\:\:\ast\:\:\ast\:\:\ast \\ $$$$\ast\:\:\ast\:\:\ast\:\:\ast\:\:\ast \\ $$$$\ast\:\:\ast\:\:\ast\:\:\ast\:\:\ast \\ $$$$ \\ $$$$\mathrm{Selecting}\:\mathrm{a}\:\mathrm{random}\:\mathrm{star}\:\mathrm{is}\:\mathrm{a}\:\:\frac{\mathrm{1}}{\mathrm{15}}\:\mathrm{chance} \\ $$$$\mathrm{at}\:\mathrm{random}.\:\mathrm{Lets}\:\mathrm{say}\:\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{pick} \\ $$$$\mathrm{a}\:\mathrm{second}\:\mathrm{random}\:\mathrm{star}\:\mathrm{that}\:\mathrm{is}\:\mathrm{next}\:\mathrm{to}\:\mathrm{it}. \\ $$$${Either}\:{above},\:{below},\:{or}\:{to}\:{the}\:{side}. \\…

For-0-x-y-z-1-solve-the-equation-x-1-y-zx-y-1-z-xy-z-1-x-yz-3-x-y-z-

Question Number 4752 by Yozzii last updated on 04/Mar/16 $${For}\:\mathrm{0}\leqslant{x},{y},{z}\leqslant\mathrm{1}\:{solve}\:{the}\:{equation} \\ $$$$\frac{{x}}{\mathrm{1}+{y}+{zx}}+\frac{{y}}{\mathrm{1}+{z}+{xy}}+\frac{{z}}{\mathrm{1}+{x}+{yz}}=\frac{\mathrm{3}}{{x}+{y}+{z}}. \\ $$ Commented by prakash jain last updated on 05/Mar/16 $$\mathrm{trivial}\:\mathrm{solution}\:\mathrm{is}\:{x}={y}={z}=\mathrm{1} \\ $$$$\mathrm{Other}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{be}\:\mathrm{worked}.…

nice-calculus-prove-that-0-1-ln-1-x-1-1-x-dx-4-1-2-

Question Number 135821 by mnjuly1970 last updated on 16/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:….{nice}\:\:\:…..\:\:\:{calculus}….\: \\ $$$$\:\:\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}−\sqrt{\mathrm{1}−{x}}}\right){dx}=\mathrm{4}\left(\mathrm{1}−\zeta\left(\mathrm{2}\right)\right) \\ $$$$ \\ $$ Answered by mathmax by abdo…

I-wanted-to-say-this-earlier-I-love-mathematics-and-I-also-love-people-But-I-m-not-here-to-solve-the-same-old-boring-problems-copied-from-facebook-or-whatsapp-or-other-platforms-They-are-not-inte

Question Number 70287 by MJS last updated on 02/Oct/19 $$\mathrm{I}\:\mathrm{wanted}\:\mathrm{to}\:\mathrm{say}\:\mathrm{this}\:\mathrm{earlier}… \\ $$$$\mathrm{I}\:\mathrm{love}\:\mathrm{mathematics}\:\mathrm{and}\:\mathrm{I}\:\mathrm{also}\:\mathrm{love}\:\mathrm{people}. \\ $$$$\mathrm{But}\:\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{here}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{same}\:\mathrm{old}\:\mathrm{boring} \\ $$$$\mathrm{problems}\:\mathrm{copied}\:\mathrm{from}\:\mathrm{facebook}\:\mathrm{or}\:\mathrm{whatsapp} \\ $$$$\mathrm{or}\:\mathrm{other}\:\mathrm{platforms}.\:\mathrm{They}\:\mathrm{are}\:\mathrm{not}\:\mathrm{interesting} \\ $$$$\mathrm{at}\:\mathrm{all}.\:\mathrm{They}\:\mathrm{have}\:\mathrm{been}\:\mathrm{coming}\:\mathrm{in}\:\mathrm{as}\:\mathrm{a}\:\mathrm{kind} \\ $$$$\mathrm{of}\:\mathrm{competition},\:\mathrm{or}\:\mathrm{simply}\:\mathrm{to}\:\mathrm{brag},\:\mathrm{they}'\mathrm{ve} \\ $$$$\mathrm{been}\:\mathrm{traded}\:\mathrm{from}\:\mathrm{one}\:\mathrm{non}−\mathrm{mathematician} \\…

f-n-x-1-n-1-1-x-2-1-x-n-1-2x-1-nx-n-N-n-gt-1-lim-n-f-n-x-n-gt-1-f-x-0-x-

Question Number 4750 by 123456 last updated on 04/Mar/16 $${f}_{{n}} \left({x}\right)=\begin{cases}{\mathrm{1}\:\:\:\:{n}=\mathrm{1}}\\{\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)…\left(\mathrm{1}−{x}^{{n}} \right)}{\left(\mathrm{1}−\mathrm{2}{x}\right)…\left(\mathrm{1}−{nx}\right)}\:\:\:\:{n}\in\mathbb{N},{n}>\mathrm{1}}\end{cases} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{f}_{{n}} \left({x}\right)=? \\ $$$${n}>\mathrm{1},{f}\left({x}\right)=\mathrm{0},{x}=? \\ $$ Commented by prakash jain…