Menu Close

Author: Tinku Tara

U-n-is-a-sequence-wich-verfy-n-N-2-n-U-n-U-n-1-1-1-calculate-U-n-interms-of-n-2-is-U-n-cojverhent-

Question Number 74026 by mathmax by abdo last updated on 17/Nov/19 $${U}_{{n}} {is}\:{a}\:{sequence}\:{wich}\:{verfy}\: \\ $$$$\forall{n}\:\in{N}\:\:\:\:\:\:\:\:\mathrm{2}^{{n}} \left(\:{U}_{{n}} +{U}_{{n}+\mathrm{1}} \right)=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{is}\:\left({U}_{{n}} \right)\:{cojverhent}\:? \\…

n-1-2n-2-3n-3-rn-r-n-n-1-n-1-n-2-n-3-n-r-1-n-1-2-n-2-3-n-3-4-n-4-r-n-r-1-0-n-1-n-2-n-3-n-Prove-the-above-identity-

Question Number 139560 by Dwaipayan Shikari last updated on 28/Apr/21 $$\underset{{n}_{\mathrm{1}} +\mathrm{2}{n}_{\mathrm{2}} +\mathrm{3}{n}_{\mathrm{3}} +..+{rn}_{{r}} ={n}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{n}_{\mathrm{1}} !{n}_{\mathrm{2}} !{n}_{\mathrm{3}} !..{n}_{{r}} !\mathrm{1}^{{n}_{\mathrm{1}} } \mathrm{2}^{{n}_{\mathrm{2}} } \mathrm{3}^{{n}_{\mathrm{3}}…

h-2-y-2-k-z-2-s-2-a-2-b-y-2-z-2-s-2-ah-y-y-b-z-z-k-0-h-a-2-yz-b-y-k-z-1-b-a-k-z-hz-1-k-h-b-y-ay-1-Find-s-min-or-at-least-express-s-f-y-or-g-z

Question Number 74024 by ajfour last updated on 18/Nov/19 $$\begin{cases}{{h}^{\mathrm{2}} +{y}^{\mathrm{2}} +\left({k}−{z}\right)^{\mathrm{2}} ={s}^{\mathrm{2}} }\\{{a}^{\mathrm{2}} +\left({b}−{y}\right)^{\mathrm{2}} +{z}^{\mathrm{2}} ={s}^{\mathrm{2}} }\\{{ah}+{y}\left({y}−{b}\right)+{z}\left({z}−{k}\right)=\mathrm{0}}\\{\frac{{h}+{a}}{\mathrm{2}}+{yz}−\left({b}−{y}\right)\left({k}−{z}\right)=\mathrm{1}}\\{{b}+{a}\left({k}−{z}\right)+{hz}=\mathrm{1}}\\{{k}+{h}\left({b}−{y}\right)+{ay}=\mathrm{1}}\end{cases} \\ $$$${Find}\:\:{s}_{{min}} \:{or}\:{at}\:{least}\:{express} \\ $$$$\:{s}={f}\left({y}\right)\:{or}\:{g}\left({z}\right). \\ $$…

advanced-calculus-lim-n-1-n-x-x-2-dx-n-1-solution-n-1-n-x-x-2-dx-k-1-n-1-k-k-1-x

Question Number 139556 by mnjuly1970 last updated on 28/Apr/21 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:……..\:{advanced}\:…\:…\:…\:{calculus}…….. \\ $$$$\:\:\:\Phi=\:{lim}_{{n}\rightarrow\infty} \left\{\int_{\mathrm{1}} ^{\:{n}} \frac{{x}}{\left[{x}\right]^{\mathrm{2}} }\:{dx}\:−\psi\left({n}+\mathrm{1}\right)\right\}=? \\ $$$$\:\:\:\:{solution}: \\ $$$$\:\:\:\:\:\Phi_{{n}} =\int_{\mathrm{1}} ^{\:{n}} \frac{{x}}{\left[{x}\right]^{\mathrm{2}}…

let-the-matrix-A-1-2-0-3-1-calculate-A-n-for-n-integr-2-find-e-A-and-e-A-

Question Number 74019 by mathmax by abdo last updated on 17/Nov/19 $${let}\:{the}\:{matrix}\:\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:−\mathrm{3}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \:\:{for}\:{n}\:{integr} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{e}^{{A}} \:\:{and}\:{e}^{−{A}} . \\ $$ Commented by mathmax by…

i-0-5-1-cotan-20-i-8-

Question Number 139555 by snipers237 last updated on 28/Apr/21 $$\:\:\underset{{i}=\mathrm{0}} {\overset{\mathrm{5}} {\prod}}\left(\mathrm{1}−{cotan}\left(\mathrm{20}+{i}\right)\right)\:\:\overset{?} {=}\:\mathrm{8} \\ $$ Answered by mr W last updated on 28/Apr/21 $$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{20}°}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{25}°}\right) \\…