Menu Close

Author: Tinku Tara

Question-4612

Question Number 4612 by Rasheed Soomro last updated on 14/Feb/16 Commented by Rasheed Soomro last updated on 14/Feb/16 $$\:{A}\:\:{triangle}\:{divides}\:\:{its} \\ $$$${circum}-{circle}\:{in}\:{three}\:{arcs} \\ $$$${say}\:\:\boldsymbol{\mathrm{c}}_{\mathrm{1}} ,\boldsymbol{\mathrm{c}}_{\mathrm{2}} ,\boldsymbol{\mathrm{c}}_{\mathrm{3}}…

Consider-the-functions-f-x-5-4-x-and-g-x-0-25-2x-4-For-what-values-of-x-do-these-functions-assume-equal-values-

Question Number 70147 by Maclaurin Stickker last updated on 01/Oct/19 $${Consider}\:{the}\:{functions}\: \\ $$$${f}\left({x}\right)=\mathrm{5}×\mathrm{4}^{−{x}} \:{and}\:{g}\left({x}\right)=\left(\mathrm{0}.\mathrm{25}\right)^{\mathrm{2}{x}} +\mathrm{4} \\ $$$${For}\:{what}\:{values}\:{of}\:{x}\:{do}\:{these}\: \\ $$$${functions}\:{assume}\:{equal}\:{values}? \\ $$ Commented by kaivan.ahmadi last…

prove-that-arg-z1z2-arg-z1-arg-z2-arg-z1-z2-arg-z1-arg-z2-

Question Number 70145 by Scientist0000001 last updated on 01/Oct/19 $${prove}\:{that}\:;\:{arg}\left(\boldsymbol{{z}}\mathrm{1}\boldsymbol{{z}}\mathrm{2}\right)={arg}\left({z}\mathrm{1}\right)+{arg}\left({z}\mathrm{2}\right). \\ $$$${arg}\left({z}\mathrm{1}/{z}\mathrm{2}\right)={arg}\left({z}\mathrm{1}\right)−{arg}\left({z}\mathrm{2}\right). \\ $$ Answered by MJS last updated on 01/Oct/19 $${z}_{\mathrm{1}} ={r}_{\mathrm{1}} \mathrm{e}^{\mathrm{i}\theta_{\mathrm{1}} }…

cos-x-sin-x-2tan-x-1-cos-x-2-0-

Question Number 135679 by liberty last updated on 15/Mar/21 $$\left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)\left(\mathrm{2tan}\:{x}+\frac{\mathrm{1}}{\mathrm{cos}\:{x}}\right)+\mathrm{2}\:=\:\mathrm{0} \\ $$ Answered by EDWIN88 last updated on 15/Mar/21 $$\mathrm{Let}\:\mathrm{tan}\:\frac{\mathrm{x}}{\mathrm{2}}\:=\:\mathrm{t}\:\rightarrow\begin{cases}{\mathrm{cos}\:\mathrm{x}=\frac{\mathrm{1}−\mathrm{t}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}\\{\mathrm{sin}\:\mathrm{x}=\frac{\mathrm{2t}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}\\{\mathrm{tan}\:\mathrm{x}=\frac{\mathrm{2t}}{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }}\end{cases} \\ $$$$\Leftrightarrow\:\left(\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}}…