Menu Close

Author: Tinku Tara

240-2-14319-

Question Number 8353 by Nayon last updated on 09/Oct/16 $$\sqrt{\mathrm{240}+\mathrm{2}\sqrt{\mathrm{14319}}}=? \\ $$ Answered by ridwan balatif last updated on 09/Oct/16 $$\sqrt{\left(\mathrm{111}+\mathrm{129}\right)+\mathrm{2}\sqrt{\mathrm{111}.\mathrm{129}}},\:\mathrm{remember}\::\sqrt{\left({a}+{b}\right)+\mathrm{2}\sqrt{{ab}}}=\sqrt{{a}}+\sqrt{{b}} \\ $$$$\sqrt{\mathrm{111}}+\sqrt{\mathrm{129}} \\ $$$$\mathrm{by}\:\mathrm{using}\:\mathrm{kalkulator},\:\mathrm{i}\:\mathrm{get}…

make-t-the-subject-of-the-formular-s-ut-1-2-gt-2-3t-3-

Question Number 8352 by tawakalitu last updated on 09/Oct/16 $$\mathrm{make}\:\mathrm{t}\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formular}. \\ $$$$\mathrm{s}\:=\:\mathrm{ut}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}^{\mathrm{2}} \:+\:\mathrm{3t}^{\mathrm{3}} \\ $$ Answered by fernandodantas1996 last updated on 13/Oct/16 $$\mathrm{s}\:=\:\mathrm{t}\left(\mathrm{u}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}+\mathrm{3t}^{\mathrm{2}} \right)\:\Leftrightarrow\:\mathrm{t}\:=\:\frac{\mathrm{s}}{\mathrm{u}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}\:+\:\mathrm{3t}^{\mathrm{2}} }…

solve-5-3x-2-8-4x-2-33-9x-8-

Question Number 8350 by Nayon last updated on 09/Oct/16 $${solve}: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{5}}{\mathrm{3}{x}+\mathrm{2}}+\frac{\mathrm{8}}{\mathrm{4}{x}+\mathrm{2}}=\frac{\mathrm{33}}{\mathrm{9}{x}+\mathrm{8}} \\ $$ Answered by Rasheed Soomro last updated on 10/Oct/16 $$\:\frac{\mathrm{5}}{\mathrm{3}{x}+\mathrm{2}}+\frac{\mathrm{8}}{\mathrm{4}{x}+\mathrm{2}}=\frac{\mathrm{33}}{\mathrm{9}{x}+\mathrm{8}}…

ABCD-is-a-rectangle-such-that-AD-2AB-and-its-center-is-O-H-is-the-top-of-a-pyramid-which-has-ABCD-as-base-All-lateral-faces-are-isosceles-triangles-planes-HAB-and-HCD-are-i-have-joined-a-g

Question Number 139419 by mathocean1 last updated on 26/Apr/21 $${ABCD}\:{is}\:{a}\:{rectangle}\:{such}\:{that}\: \\ $$$${AD}=\mathrm{2}{AB}\:{and}\:{its}\:{center}\:{is}\:{O}.\: \\ $$$${H}\:{is}\:{the}\:{top}\:{of}\:{a}\:{pyramid}\:{which} \\ $$$${has}\:{ABCD}\:{as}\:{base}.\:{All}\:{lateral} \\ $$$${faces}\:{are}\:{isosceles}\:{triangles}.\:{planes} \\ $$$$\left({HAB}\right)\:{and}\:\left({HCD}\right)\:{are}\:\bot. \\ $$$${i}\:{have}\:{joined}\:{a}\:{graphic}. \\ $$$$\mathrm{1}.\:{show}\:{that}\:\left({OH}\right)\bot\left({ABC}\right). \\…