Menu Close

Author: Tinku Tara

Let-f-x-3-x-1-g-x-3-x-and-h-x-4-determine-the-values-of-x-for-which-f-x-g-x-h-x-

Question Number 70003 by Maclaurin Stickker last updated on 29/Sep/19 $${Let}\:{f}\left({x}\right)=\mathrm{3}^{{x}−\mathrm{1}} ,\:{g}\left({x}\right)=\mathrm{3}^{{x}} \:{and}\:{h}\left({x}\right)=\mathrm{4} \\ $$$${determine}\:{the}\:{values}\:{of}\:\boldsymbol{{x}}\:{for}\:{which}: \\ $$$${f}\left({x}\right)+{g}\left({x}\right)\geqslant{h}\left({x}\right). \\ $$$$ \\ $$ Commented by Abdo msup.…

1-x-2-y-2-x-2-y-2-a-x-y-x-y-b-a-b-R-2-x-y-x-y-a-x-y-x-y-b-3-x-2-y-2-a-b-xy-x-3-y-3-

Question Number 69995 by behi83417@gmail.com last updated on 29/Sep/19 $$\:\:\mathrm{1}.\begin{cases}{\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} }+\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{y}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}}\\{\sqrt{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}}+\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}}=\boldsymbol{\mathrm{b}}}\end{cases}\:\:\:\:\:\left[\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\in\boldsymbol{\mathrm{R}}^{+} \right] \\ $$$$ \\ $$$$\:\:\:\mathrm{2}.\begin{cases}{\sqrt{\sqrt{\mathrm{x}}+\mathrm{y}}+\sqrt{\mathrm{x}+\sqrt{\mathrm{y}}}=\boldsymbol{\mathrm{a}}}\\{\sqrt{\sqrt{\mathrm{x}}−\mathrm{y}}+\sqrt{\mathrm{x}−\sqrt{\mathrm{y}}}=\boldsymbol{\mathrm{b}}}\end{cases} \\ $$$$\: \\ $$$$\:\:\:\mathrm{3}.\begin{cases}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\left(\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{b}}\right)\boldsymbol{\mathrm{xy}}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{3}}…

0-5-log-10-x-2-55x-90-log-10-x-36-log-10-2-Find-the-value-s-of-x-and-determine-the-domain-of-x-

Question Number 4457 by love math last updated on 29/Jan/16 $$\mathrm{0}.\mathrm{5}\:\left({log}_{\mathrm{10}} \left({x}^{\mathrm{2}} −\mathrm{55}{x}+\mathrm{90}\right)\:−\:{log}_{\mathrm{10}} \left({x}−\mathrm{36}\right)\right)=\:{log}_{\mathrm{10}} \sqrt{\mathrm{2}} \\ $$$${Find}\:{the}\:{value}\left({s}\right)\:{of}\:{x}\:{and}\:{determine}\:{the}\:{domain}\:{of}\:{x}. \\ $$ Commented by Yozzii last updated on…

nice-calculus-evaluation-of-0-xe-x-1-e-x-dx-solution-1-e-x-t-x-ln-1-t-e-x-dx-dt-0-

Question Number 135525 by mnjuly1970 last updated on 13/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\:{nice}\:…………….\:{calculus}… \\ $$$$\:\:\:\:\:{evaluation}\:{of}\:::\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} {xe}^{−{x}} \sqrt{\mathrm{1}−{e}^{−{x}} }\:{dx} \\ $$$$\:\:\:\:{solution}::\: \\ $$$$\:\:\:\:\mathrm{1}−{e}^{−{x}} ={t}\:\:\Rightarrow\:\left\{_{\:{x}=−{ln}\left(\mathrm{1}−{t}\right)} ^{\:{e}^{−{x}} {dx}={dt}} \right. \\…

S-x-1-x-1-x-2-x-2-2-x-3-x-3-3-x-4-x-4-4-S-i-1-x-i-x-i-1-i-i-Does-S-limit-to-a-value-for-x-

Question Number 4454 by FilupSmith last updated on 29/Jan/16 $${S}=\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}+\frac{{x}−\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{2}}+\frac{{x}−\mathrm{3}}{{x}^{\mathrm{3}} +\mathrm{3}}+\frac{{x}−\mathrm{4}}{{x}^{\mathrm{4}} −\mathrm{4}}+… \\ $$$$ \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}−{i}}{{x}^{{i}} −\left(−\mathrm{1}\right)^{{i}} {i}} \\ $$$${D}\mathrm{oes}\:\mathrm{S}\:{limit}\:{t}\mathrm{o}\:\mathrm{a}\:\mathrm{value}\:\mathrm{for}\:\pm{x}? \\ $$…