Menu Close

Author: Tinku Tara

1-sin-x-dx-

Question Number 4397 by moussapk last updated on 20/Jan/16 $$\int\left(\frac{\mathrm{1}}{{sin}\left({x}\right)}{dx}\right. \\ $$ Answered by Yozzii last updated on 20/Jan/16 $${I}=\int\frac{\mathrm{1}}{{sinx}}{dx}=\int{cosecxdx} \\ $$$${I}=\int\frac{{cosecx}\left({cosecx}+{cotx}\right)}{{cosecx}+{cotx}}{dx} \\ $$$${I}=\int\frac{{cosec}^{\mathrm{2}} {x}+{cotxcosecx}}{{cosecx}+{cotx}}{dx}…

Question-135467

Question Number 135467 by benjo_mathlover last updated on 13/Mar/21 Answered by EDWIN88 last updated on 13/Mar/21 $$\begin{vmatrix}{\alpha\:\:\:\:\:\beta\:\:\:\:\:\:\gamma}\\{\beta\:\:\:\:\:\gamma\:\:\:\:\:\:\alpha}\\{\gamma\:\:\:\:\:\alpha\:\:\:\:\:\beta}\end{vmatrix}=\:\alpha\left(\beta\gamma−\alpha^{\mathrm{2}} \right)−\beta\left(\beta^{\mathrm{2}} −\alpha\gamma\right)+\gamma\left(\alpha\beta−\gamma^{\mathrm{2}} \right) \\ $$$$=\alpha\beta\gamma−\alpha^{\mathrm{3}} −\beta^{\mathrm{3}} +\alpha\beta\gamma+\alpha\beta\gamma−\gamma^{\mathrm{3}} \\…

Question-4387

Question Number 4387 by Rasheed Soomro last updated on 17/Jan/16 Commented by Rasheed Soomro last updated on 17/Jan/16 $$\mathrm{In}\:\mathrm{the}\:\mathrm{trapezium}\:\mathrm{m}\angle\mathrm{A}=\mathrm{m}\angle\mathrm{B}=\frac{\pi}{\mathrm{2}}\:\mathrm{rad}. \\ $$$$\mathrm{m}\overline {\mathrm{AB}}=\mathrm{m}\overline {\mathrm{AD}}=\mathrm{x}\:\mathrm{units}\:\mathrm{and}\:\mathrm{m}\overline {\mathrm{BC}}=\mathrm{2x}\:\mathrm{units}. \\…

help-me-S-1-2-2-3-2-4-5-2-6-2-7-2-8-2-9-2-10-2-11-2-12-2-n-2-n-1-2-n-2-2-2-n-3-2-

Question Number 135459 by Abdoulaye last updated on 13/Mar/21 $${help}\:{me} \\ $$$$ \\ $$$${S}=\left(\mathrm{1}−\mathrm{2}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} +\mathrm{4}\right)+\left(\mathrm{5}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} \right)+\left(\mathrm{9}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} −\mathrm{11}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} \right)+ \\…