Menu Close

Author: Tinku Tara

Question-135437

Question Number 135437 by 0731619177 last updated on 13/Mar/21 Answered by EDWIN88 last updated on 13/Mar/21 $$\mathrm{L}'\mathrm{H}\hat {\mathrm{o}pital}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{4x}−\mathrm{2sin}\:\mathrm{2x}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{cos}\:\mathrm{2x}}}{\mathrm{4x}^{\mathrm{3}} }\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{cos}\:\mathrm{2x}}.\underset{{x}\rightarrow\mathrm{0}}…

Is-the-following-correct-S-i-1-2-i-1-S-1-2-4-8-16-32-64-128-2S-2-4-8-6-32-2S-S-1-S-1-

Question Number 4365 by Filup last updated on 13/Jan/16 $$\mathrm{Is}\:\mathrm{the}\:\mathrm{following}\:\mathrm{correct}? \\ $$$$ \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}−\mathrm{1}} \\ $$$${S}=\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{16}+\mathrm{32}+\mathrm{64}+\mathrm{128}+… \\ $$$$\therefore\mathrm{2}{S}=\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{6}+\mathrm{32}+… \\ $$$$\mathrm{2}{S}={S}−\mathrm{1} \\ $$$${S}=−\mathrm{1} \\…

Prove-a-1-a-2-for-a-gt-0-algebraically-

Question Number 135433 by naka3546 last updated on 13/Mar/21 $${Prove}\:\:{a}\:+\:\frac{\mathrm{1}}{{a}}\:\geqslant\:\mathrm{2}\:\:{for}\:\:{a}\:>\:\mathrm{0}\:\:{algebraically}\:. \\ $$ Answered by mr W last updated on 13/Mar/21 $${a}+\frac{\mathrm{1}}{{a}}=\left(\sqrt{{a}}−\frac{\mathrm{1}}{\:\sqrt{{a}}}\right)^{\mathrm{2}} +\mathrm{2}\geqslant\mathrm{2} \\ $$ Commented…

If-lim-x-a-f-x-g-x-exists-and-lim-x-a-g-x-0-then-show-that-lim-x-a-f-x-0-

Question Number 4363 by Rasheed Soomro last updated on 13/Jan/16 $${If}\:\:\underset{{x}\rightarrow{a}} {{lim}}\:\:\frac{{f}\left({x}\right)}{{g}\left({x}\right)}\:{exists}\:{and}\:\underset{{x}\rightarrow{a}} {{lim}}\:{g}\left({x}\right)=\mathrm{0}, \\ $$$${then}\:{show}\:{that} \\ $$$$\underset{{x}\rightarrow{a}} {{lim}}\:{f}\left({x}\right)=\mathrm{0}. \\ $$ Answered by Yozzii last updated…

Determine-integers-x-y-z-satisfying-ax-b-by-c-cz-a-a-b-c-are-fixed-integers-

Question Number 4362 by Rasheed Soomro last updated on 13/Jan/16 $$\mathrm{Determine}\:\mathrm{integers}\:\mathrm{x},\mathrm{y},\mathrm{z}\:\mathrm{satisfying}: \\ $$$$\mathrm{ax}^{\mathrm{b}} +\mathrm{by}^{\mathrm{c}} =\mathrm{cz}^{\mathrm{a}} \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{are}\:\mathrm{fixed}\:\mathrm{integers}. \\ $$ Commented by Yozzii last updated on…

solve-in-0-x-180-the-equation-sin-3x-cos-x-0-

Question Number 135435 by physicstutes last updated on 13/Mar/21 $$\mathrm{solve}\:\mathrm{in}\:\mathrm{0}\:\leqslant\:{x}\:\leqslant\:\mathrm{180}°\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\mathrm{sin}\:\mathrm{3}{x}\:+\:\mathrm{cos}\:{x}\:=\:\mathrm{0}\: \\ $$ Answered by mr W last updated on 13/Mar/21 $$\mathrm{cos}\:{x}=−\mathrm{sin}\:\mathrm{3}{x}=\mathrm{sin}\:\left(−\mathrm{3}{x}\right)=\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}+\mathrm{3}{x}\right) \\ $$$$\frac{\pi}{\mathrm{2}}+\mathrm{3}{x}=\mathrm{2}{k}\pi\pm{x}…