Question Number 135402 by mohammad17 last updated on 12/Mar/21 Answered by Ñï= last updated on 13/Mar/21 $${y}_{{p}} =\frac{\mathrm{1}}{{D}^{\mathrm{2}} −\mathrm{2}{D}+\mathrm{2}}\left(\mathrm{4}{xe}^{{x}} \mathrm{co}{s}\:{x}+{xe}^{−{x}} +{x}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\mathrm{1}>>\frac{\mathrm{1}}{{D}^{\mathrm{2}} −\mathrm{2}{D}+\mathrm{2}}\mathrm{4}{xe}^{{x}}…
Question Number 4326 by pedro pablo last updated on 10/Jan/16 $${hola} \\ $$ Answered by pedro pablo last updated on 10/Jan/16 Answered by pedro pablo…
Question Number 135393 by Eric002 last updated on 12/Mar/21 $${f}\:'\left({x}\right)=\frac{\left({x}−\mathrm{3}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{4}\right)}{\mathrm{16}} \\ $$$${g}\left({x}\right)={f}\left({x}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$${find}\:{g}'\left(\mathrm{2}\right) \\ $$ Answered by MJS_new last updated on…
Question Number 135395 by 0731619177 last updated on 12/Mar/21 Answered by Dwaipayan Shikari last updated on 12/Mar/21 $${I}\left({b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {sin}\left({log}\left(\frac{\mathrm{1}}{{x}}\right)\right)\frac{{x}^{{b}} −{x}^{{a}} }{{log}\left({x}\right)}{dx} \\ $$$${I}'\left({b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 135389 by Bird last updated on 12/Mar/21 $${let}\:{U}_{{n}} =\int_{−\infty} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$${calculate}\:{lim}_{{n}\rightarrow\infty} {e}^{{n}^{\mathrm{2}} } {U}_{{n}} \\ $$ Terms of Service…
Question Number 135388 by Bird last updated on 12/Mar/21 $${find}\:\:{lim}_{{n}\rightarrow\infty} \int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} \Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right){dx} \\ $$ Answered by mathmax by abdo last updated on 15/Mar/21 $$\mathrm{let}\:\mathrm{U}_{\mathrm{n}}…
Question Number 4318 by Rasheed Soomro last updated on 10/Jan/16 Commented by 123456 last updated on 10/Jan/16 $${x}/\mathrm{2} \\ $$ Commented by prakash jain last…
Question Number 4317 by shiv009 last updated on 10/Jan/16 Commented by prakash jain last updated on 10/Jan/16 $$\mathrm{Vertices}\:\mathrm{of}\:\mathrm{triangle}\:\left(\mathrm{1},\mathrm{3}\right),\:\left(\mathrm{4},−\mathrm{1}\right)\: \\ $$$$\mathrm{area}\:\mathrm{5}.\:\mathrm{Find}\:\mathrm{position}\:\mathrm{of}\:\mathrm{3}^{\mathrm{rd}} \mathrm{vertex}. \\ $$$$\left(\mathrm{0},\:\mathrm{2tan}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{4}}\right) \\…
Question Number 135385 by rs4089 last updated on 12/Mar/21 $$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\frac{\mathrm{3}}{\mathrm{4}}\:\frac{\mathrm{1}}{{x}^{\mathrm{4}} }−\frac{\mathrm{1}}{\mathrm{2}}\frac{\mathrm{3}}{\mathrm{4}}\frac{\mathrm{5}}{\mathrm{6}}\:\frac{\mathrm{1}}{{x}^{\mathrm{6}} }+….=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 135384 by Bird last updated on 12/Mar/21 $${let}\:{f}\left({x}\right)={ln}\left(\mathrm{2}+{x}^{\mathrm{3}} \right) \\ $$$${if}\:{f}\left({x}\right)=\Sigma{a}_{{n}} {x}^{{n}} \\ $$$${find}\:{a}_{{n}} \\ $$ Answered by Dwaipayan Shikari last updated on…