Question Number 135378 by Bird last updated on 12/Mar/21 $${compare}\:{without}\:{calculator} \\ $$$$\mathrm{5}\left(\sqrt{\mathrm{1}+\sqrt{\mathrm{7}}}−\mathrm{1}\right)\:{and}\:\mathrm{7}\left(\sqrt{\mathrm{1}+\sqrt{\mathrm{5}}}−\mathrm{1}\right) \\ $$ Answered by mr W last updated on 12/Mar/21 $$\mathrm{5}\left(\sqrt{\mathrm{1}+\sqrt{\mathrm{7}}}−\mathrm{1}\right)<\mathrm{5}\left(\sqrt{\mathrm{1}+\sqrt{\mathrm{9}}}−\mathrm{1}\right)=\mathrm{5} \\ $$$$…
Question Number 135373 by Bird last updated on 12/Mar/21 $${determine}\:{the}\:{sequence}\:{u}_{{n}} \\ $$$${wich}\:{verify}\:{u}_{{n}} \:+{u}_{{n}+\mathrm{1}} =\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 135372 by Bird last updated on 12/Mar/21 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\sqrt{{x}}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{3}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 135375 by Bird last updated on 12/Mar/21 $${let}\:\varphi\left({x}\right)=\frac{{arctan}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{3}} \\ $$$${developp}\:\varphi\:{at}\:{integr}\:{serie} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 69836 by Askash last updated on 28/Sep/19 Commented by JDamian last updated on 28/Sep/19 $$\mathrm{6}\:\Omega \\ $$ Commented by Askash last updated on…
Question Number 135369 by Bird last updated on 12/Mar/21 $${let}\:{f}\left({x}\right)={e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{3}+{x}\right) \\ $$$$\left.\mathrm{1}\left.\right)\:{calculate}\:{f}^{\left({n}\right.} \right)\left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 135368 by Bird last updated on 12/Mar/21 $${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{xarctan}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Answered by Dwaipayan Shikari last updated on 12/Mar/21 $${I}\left({a}\right)=\int_{\mathrm{0}}…
Question Number 4298 by Yozzii last updated on 08/Jan/16 $${Find}\:{Q}=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{3}} }{{e}^{{x}/{T}} −\mathrm{1}}{dx}\:,{where}\:{Q}\:{is} \\ $$$${assumed}\:{finite}\:{for}\:{T}\:{being}\:{a}\: \\ $$$${positive}\:{constant},\:{and}\:{Q}\:{taking}\:{the} \\ $$$${form}\:{Q}={KT}^{{n}} \:,{where}\:{K}={constant} \\ $$$${and}\:{n}\in\mathbb{Z}. \\ $$$$…
Question Number 135371 by Bird last updated on 12/Mar/21 $${let}\:{f}\left({x}\right)={tan}\left(\mathrm{2}{x}\right) \\ $$$${ddvelopp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 4297 by 123456 last updated on 07/Jan/16 $$\mathrm{lets} \\ $$$${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R},\forall{x}\geqslant{y}\Rightarrow{f}\left({x}\right)\geqslant{f}\left({y}\right) \\ $$$${g}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$$\mathrm{if} \\ $$$$\forall{x}\in\left[\mathrm{0},+\infty\right),{f}\left({x}\right)\leqslant{g}\left({x}\right)\leqslant{f}\left(\mathrm{2}{x}\right) \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{L},\mathrm{L}\:\mathrm{is}\:\mathrm{finite} \\ $$$$\mathrm{does} \\ $$$$\underset{{x}\rightarrow+\infty}…