Menu Close

Author: Tinku Tara

compare-without-calculator-5-1-7-1-and-7-1-5-1-

Question Number 135378 by Bird last updated on 12/Mar/21 $${compare}\:{without}\:{calculator} \\ $$$$\mathrm{5}\left(\sqrt{\mathrm{1}+\sqrt{\mathrm{7}}}−\mathrm{1}\right)\:{and}\:\mathrm{7}\left(\sqrt{\mathrm{1}+\sqrt{\mathrm{5}}}−\mathrm{1}\right) \\ $$ Answered by mr W last updated on 12/Mar/21 $$\mathrm{5}\left(\sqrt{\mathrm{1}+\sqrt{\mathrm{7}}}−\mathrm{1}\right)<\mathrm{5}\left(\sqrt{\mathrm{1}+\sqrt{\mathrm{9}}}−\mathrm{1}\right)=\mathrm{5} \\ $$$$…

let-f-x-e-2x-ln-3-x-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-

Question Number 135369 by Bird last updated on 12/Mar/21 $${let}\:{f}\left({x}\right)={e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{3}+{x}\right) \\ $$$$\left.\mathrm{1}\left.\right)\:{calculate}\:{f}^{\left({n}\right.} \right)\left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$ Terms of Service Privacy Policy Contact:…

Find-Q-0-x-3-e-x-T-1-dx-where-Q-is-assumed-finite-for-T-being-a-positive-constant-and-Q-taking-the-form-Q-KT-n-where-K-constant-and-n-Z-

Question Number 4298 by Yozzii last updated on 08/Jan/16 $${Find}\:{Q}=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{3}} }{{e}^{{x}/{T}} −\mathrm{1}}{dx}\:,{where}\:{Q}\:{is} \\ $$$${assumed}\:{finite}\:{for}\:{T}\:{being}\:{a}\: \\ $$$${positive}\:{constant},\:{and}\:{Q}\:{taking}\:{the} \\ $$$${form}\:{Q}={KT}^{{n}} \:,{where}\:{K}={constant} \\ $$$${and}\:{n}\in\mathbb{Z}. \\ $$$$…

lets-f-0-R-x-y-f-x-f-y-g-0-R-if-x-0-f-x-g-x-f-2x-lim-x-f-x-L-L-is-finite-does-lim-x-f-x-g-x-0-

Question Number 4297 by 123456 last updated on 07/Jan/16 $$\mathrm{lets} \\ $$$${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R},\forall{x}\geqslant{y}\Rightarrow{f}\left({x}\right)\geqslant{f}\left({y}\right) \\ $$$${g}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$$\mathrm{if} \\ $$$$\forall{x}\in\left[\mathrm{0},+\infty\right),{f}\left({x}\right)\leqslant{g}\left({x}\right)\leqslant{f}\left(\mathrm{2}{x}\right) \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{L},\mathrm{L}\:\mathrm{is}\:\mathrm{finite} \\ $$$$\mathrm{does} \\ $$$$\underset{{x}\rightarrow+\infty}…