Menu Close

Author: Tinku Tara

An-online-trading-company-wants-to-offer-discounts-to-customers-The-company-has-recently-emailed-the-discount-codes-to-customers-New-customers-must-have-the-code-to-be-eligible-but-returning-cust

Question Number 135348 by nadovic last updated on 12/Mar/21 $$\mathrm{An}\:\mathrm{online}\:\mathrm{trading}\:\mathrm{company}\:\mathrm{wants}\:\mathrm{to} \\ $$$$\mathrm{offer}\:\mathrm{discounts}\:\mathrm{to}\:\mathrm{customers}.\:\mathrm{The}\: \\ $$$$\mathrm{company}\:\mathrm{has}\:\mathrm{recently}\:\mathrm{emailed}\:\mathrm{the} \\ $$$$\mathrm{discount}\:\mathrm{codes}\:\mathrm{to}\:\mathrm{customers}.\:\mathrm{New}\: \\ $$$$\mathrm{customers}\:\mathrm{must}\:\mathrm{have}\:\mathrm{the}\:\mathrm{code}\:\mathrm{to}\:\mathrm{be}\: \\ $$$$\mathrm{eligible}\:\mathrm{but}\:\mathrm{returning}\:\mathrm{customers}\:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{eligible}\:\mathrm{for}\:\mathrm{the}\:\mathrm{discount}. \\ $$$$\:\:\:\:\:\:{Let}\:\:\:{A}\:−\:{Returning}\:{Customer} \\…

lim-x-xsin-pi-x-

Question Number 69809 by RAKESH MANDA last updated on 28/Sep/19 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\mathrm{sin}\:\frac{\pi}{{x}} \\ $$ Commented by mr W last updated on 28/Sep/19 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\mathrm{sin}\:\frac{\pi}{{x}} \\…

1-2-

Question Number 4268 by Momeen last updated on 06/Jan/16 $$\mathrm{1}+\mathrm{2}= \\ $$ Answered by Yozzii last updated on 06/Jan/16 $$\frac{\mathrm{1}}{\mathrm{11}}×\frac{\partial^{\mathrm{4}} }{\partial^{\mathrm{2}} {x}\partial^{\mathrm{2}} {y}}\left[\frac{\mathrm{11}}{\mathrm{4}}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right]\left({exp}\left({ln}\left[\frac{\mathrm{24}}{\pi}\left\{\underset{{n}\rightarrow+\infty}…

1-find-f-0-cos-x-x-4-1-2-dx-with-real-2-find-the-value-of-0-cos-2x-x-4-1-2-dx-3-find-nature-of-the-serie-f-n-

Question Number 69803 by Abdo msup. last updated on 28/Sep/19 $$\left.\mathrm{1}\right){find}\:\:\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\:{with}\:\alpha\:{real} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma{f}\left({n}\right) \\ $$…

Analyze-for-integer-solution-a-b-c-are-fixed-positive-integers-ax-a-by-b-cz-c-

Question Number 4266 by Rasheed Soomro last updated on 06/Jan/16 $$\mathrm{Analyze}\:\mathrm{for}\:\:\mathrm{integer}\:\mathrm{solution}\:: \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{are}\:\mathrm{fixed}\:\mathrm{positive}\:\mathrm{integers}. \\ $$$$\mathrm{ax}^{\mathrm{a}} +\mathrm{by}^{\mathrm{b}} =\mathrm{cz}^{\mathrm{c}} \\ $$ Commented by Yozzii last updated on…