Question Number 69794 by mathmax by abdo last updated on 27/Sep/19 $${let}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{\mathrm{6}} \:−{e}^{{i}\alpha} \:\:\:\:{with}\:\alpha\:{real} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right){inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){factorize}\:{p}\left({x}\right){inside}\:{R}\left[{x}\right] \\ $$ Commented by mathmax…
Question Number 69795 by mathmax by abdo last updated on 27/Sep/19 $${let}\:{p}\left({x}\right)=\left({x}+{in}\right)^{{n}} −{n}^{{n}} \:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)} \\ $$ Commented by mathmax…
Question Number 69792 by mathmax by abdo last updated on 27/Sep/19 $${find}\:{f}\left(\alpha\right)\:=\int\:\:\:\frac{{dx}}{{x}+\alpha+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}} \\ $$$${and}\:{g}\left(\alpha\right)=\int\:\:\:\frac{{dx}}{\left({x}+\alpha+\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}\right)^{\mathrm{2}} }\:\:\:\:{with}\:\alpha\:{real} \\ $$ Commented by mathmax by abdo last…
Question Number 69790 by mathmax by abdo last updated on 27/Sep/19 $${sove}\:\left({x}^{\mathrm{2}} −\mathrm{3}{x}\right){y}^{''} \:\:+\mathrm{2}{x}\:{y}^{'} \:=\left(\mathrm{2}{x}+\mathrm{1}\right){e}^{−{x}^{\mathrm{2}} } \\ $$ Commented by mathmax by abdo last updated…
Question Number 135326 by BHOOPENDRA last updated on 12/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 69789 by mathmax by abdo last updated on 27/Sep/19 $${solve}\:{sin}\left(\mathrm{2}{x}\right){y}^{'} \:−\mathrm{3}\left({cosx}\right){y}\:={xe}^{−{x}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 69786 by mathmax by abdo last updated on 27/Sep/19 $${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$ Commented by mathmax by abdo last…
Question Number 4250 by Yozzii last updated on 06/Jan/16 $${Let}\:{u}=\frac{{ln}\left(\mathrm{3}−\left\{\frac{{ln}\left(\mathrm{3}−\left[\frac{{ln}\left(\mathrm{3}−\left(\ldots\right.\right.}{{ln}\left(\mathrm{2}+\left(\ldots\right.\right.}\right.\right.}{{ln}\left(\mathrm{2}+\left[\frac{{ln}\left(\mathrm{3}−\left(\ldots\right.\right.}{{ln}\left(\mathrm{2}+\left(\ldots\right.\right.}\right.\right.}\right\}\right)}{{ln}\left(\mathrm{2}+\left\{\frac{{ln}\left(\mathrm{3}−\left[\frac{{ln}\left(\mathrm{3}−\left(\ldots\right.\right.}{{ln}\left(\mathrm{2}+\left(\ldots\right.\right.}\right.\right.}{{ln}\left(\mathrm{2}+\left[\frac{{ln}\left(\mathrm{3}−\left(\ldots\right.\right.}{{ln}\left(\mathrm{2}+\left(\ldots\right.\right.}\right.\right.}\right\}\right)}. \\ $$$${What}\:{is}\:{the}\:{value}\:{of}\:{u}?\: \\ $$$$ \\ $$$${Let}\:{k}=\frac{{ln}\left({x}−\left\{\frac{{ln}\left({x}−\left[\frac{{ln}\left({x}−\left(\ldots\right.\right.}{{ln}\left({x}−\mathrm{1}+\left(\ldots\right.\right.}\right.\right.}{{ln}\left({x}−\mathrm{1}+\left[\frac{{ln}\left({x}−\left(\ldots\right.\right.}{{ln}\left({x}−\mathrm{1}+\left(\ldots\right.\right.}\right.\right.}\right\}\right)}{{ln}\left({x}−\mathrm{1}+\left\{\frac{{ln}\left({x}−\left[\frac{{ln}\left({x}−\left(\ldots\right.\right.}{{ln}\left({x}−\mathrm{1}+\left(\ldots\right.\right.}\right.\right.}{{ln}\left({x}−\mathrm{1}+\left[\frac{{ln}\left({x}−\left(\ldots\right.\right.}{{ln}\left({x}−\mathrm{1}+\left(\ldots\right.\right.}\right.\right.}\right\}\right)}. \\ $$$${For}\:{what}\:{values}\:{of}\:{x}\:{does} \\ $$$$\left({i}\right)\:{k}\:{converge}\:\left({ii}\right)\:{k}\:{diverge}? \\ $$ Commented by Yozzii…
Question Number 69784 by mathmax by abdo last updated on 27/Sep/19 $${calculate}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\frac{{a}}{{x}^{\mathrm{2}} }\right)} {dx}\:\:{with}\:{a}>\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 135313 by bobhans last updated on 12/Mar/21 $${Given}\:{f}\left({x}\right)\:=\:\mathrm{5}{x}+\mathrm{cos}\:\left(\mathrm{3}{x}\right) \\ $$$${Find}\:{the}\:{value}\:{of}\:\frac{{d}}{{dx}}\:\left[{f}^{−\mathrm{1}} \left(\mathrm{1}\right)\right] \\ $$ Answered by liberty last updated on 12/Mar/21 $$\left(\mathrm{1}\right){f}\left(\mathrm{0}\right)=\mathrm{1}\Leftrightarrow{f}^{−\mathrm{1}} \left(\mathrm{1}\right)=\mathrm{0} \\…