Menu Close

Author: Tinku Tara

let-p-x-x-1-6-e-i-with-real-1-find-the-roots-of-p-x-2-factorize-p-x-inside-C-x-3-factorize-p-x-inside-R-x-

Question Number 69794 by mathmax by abdo last updated on 27/Sep/19 $${let}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{\mathrm{6}} \:−{e}^{{i}\alpha} \:\:\:\:{with}\:\alpha\:{real} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right){inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){factorize}\:{p}\left({x}\right){inside}\:{R}\left[{x}\right] \\ $$ Commented by mathmax…

let-p-x-x-in-n-n-n-with-n-integr-natural-1-find-the-roots-of-p-x-2-factorize-p-x-inside-C-x-3-decompose-the-fraction-F-x-1-p-x-

Question Number 69795 by mathmax by abdo last updated on 27/Sep/19 $${let}\:{p}\left({x}\right)=\left({x}+{in}\right)^{{n}} −{n}^{{n}} \:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)} \\ $$ Commented by mathmax…

find-f-dx-x-x-2-3-and-g-dx-x-x-2-3-2-with-real-

Question Number 69792 by mathmax by abdo last updated on 27/Sep/19 $${find}\:{f}\left(\alpha\right)\:=\int\:\:\:\frac{{dx}}{{x}+\alpha+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}} \\ $$$${and}\:{g}\left(\alpha\right)=\int\:\:\:\frac{{dx}}{\left({x}+\alpha+\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}\right)^{\mathrm{2}} }\:\:\:\:{with}\:\alpha\:{real} \\ $$ Commented by mathmax by abdo last…

Let-u-ln-3-ln-3-ln-3-ln-2-ln-2-ln-3-ln-2-ln-2-ln-3-ln-3-ln-2-ln-2-ln-3-ln-2-What-is-the-value-of-u-Let-k-ln-x-ln-x-

Question Number 4250 by Yozzii last updated on 06/Jan/16 $${Let}\:{u}=\frac{{ln}\left(\mathrm{3}−\left\{\frac{{ln}\left(\mathrm{3}−\left[\frac{{ln}\left(\mathrm{3}−\left(\ldots\right.\right.}{{ln}\left(\mathrm{2}+\left(\ldots\right.\right.}\right.\right.}{{ln}\left(\mathrm{2}+\left[\frac{{ln}\left(\mathrm{3}−\left(\ldots\right.\right.}{{ln}\left(\mathrm{2}+\left(\ldots\right.\right.}\right.\right.}\right\}\right)}{{ln}\left(\mathrm{2}+\left\{\frac{{ln}\left(\mathrm{3}−\left[\frac{{ln}\left(\mathrm{3}−\left(\ldots\right.\right.}{{ln}\left(\mathrm{2}+\left(\ldots\right.\right.}\right.\right.}{{ln}\left(\mathrm{2}+\left[\frac{{ln}\left(\mathrm{3}−\left(\ldots\right.\right.}{{ln}\left(\mathrm{2}+\left(\ldots\right.\right.}\right.\right.}\right\}\right)}. \\ $$$${What}\:{is}\:{the}\:{value}\:{of}\:{u}?\: \\ $$$$ \\ $$$${Let}\:{k}=\frac{{ln}\left({x}−\left\{\frac{{ln}\left({x}−\left[\frac{{ln}\left({x}−\left(\ldots\right.\right.}{{ln}\left({x}−\mathrm{1}+\left(\ldots\right.\right.}\right.\right.}{{ln}\left({x}−\mathrm{1}+\left[\frac{{ln}\left({x}−\left(\ldots\right.\right.}{{ln}\left({x}−\mathrm{1}+\left(\ldots\right.\right.}\right.\right.}\right\}\right)}{{ln}\left({x}−\mathrm{1}+\left\{\frac{{ln}\left({x}−\left[\frac{{ln}\left({x}−\left(\ldots\right.\right.}{{ln}\left({x}−\mathrm{1}+\left(\ldots\right.\right.}\right.\right.}{{ln}\left({x}−\mathrm{1}+\left[\frac{{ln}\left({x}−\left(\ldots\right.\right.}{{ln}\left({x}−\mathrm{1}+\left(\ldots\right.\right.}\right.\right.}\right\}\right)}. \\ $$$${For}\:{what}\:{values}\:{of}\:{x}\:{does} \\ $$$$\left({i}\right)\:{k}\:{converge}\:\left({ii}\right)\:{k}\:{diverge}? \\ $$ Commented by Yozzii…

Given-f-x-5x-cos-3x-Find-the-value-of-d-dx-f-1-1-

Question Number 135313 by bobhans last updated on 12/Mar/21 $${Given}\:{f}\left({x}\right)\:=\:\mathrm{5}{x}+\mathrm{cos}\:\left(\mathrm{3}{x}\right) \\ $$$${Find}\:{the}\:{value}\:{of}\:\frac{{d}}{{dx}}\:\left[{f}^{−\mathrm{1}} \left(\mathrm{1}\right)\right] \\ $$ Answered by liberty last updated on 12/Mar/21 $$\left(\mathrm{1}\right){f}\left(\mathrm{0}\right)=\mathrm{1}\Leftrightarrow{f}^{−\mathrm{1}} \left(\mathrm{1}\right)=\mathrm{0} \\…