Menu Close

Author: Tinku Tara

Area-of-ACBD-A-B-elipse-verticale-AB-MC-M-elipse-horizontale-A-elipse-horizontale-elipse-veeticale-

Question Number 213063 by a.lgnaoui last updated on 29/Oct/24 $$\mathrm{Area}\:\mathrm{of}\:\left[\mathrm{ACBD}\right]\:\:? \\ $$$$\left\{\mathrm{A}\:,\mathrm{B}\:\right\}\in\:\mathrm{elipse}\:\mathrm{verticale}\:\: \\ $$$$\left[\mathrm{AB}\right]\bot\mathrm{MC} \\ $$$$\mathrm{M}\in\:\mathrm{elipse}\:\mathrm{horizontale}\:\: \\ $$$$\mathrm{A}\:\in\left[\mathrm{elipse}\:\mathrm{horizontale}\:\cap\mathrm{elipse}\:\mathrm{veeticale}\right]. \\ $$ Commented by a.lgnaoui last updated…

Question-213020

Question Number 213020 by Spillover last updated on 28/Oct/24 Commented by Ghisom last updated on 29/Oct/24 $$\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{only}\:\mathrm{if}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{special}\:\mathrm{one} \\ $$$$\mathrm{rectangular}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{fit}\:\mathrm{but}\:\mathrm{isosceles}\:\mathrm{fits} \\ $$$${a}={b}=\mathrm{8}\wedge{c}=\frac{\mathrm{48}}{\mathrm{5}} \\ $$$$\mathrm{I}\:\mathrm{used}\:\mathrm{Heron}'\mathrm{s}\:\mathrm{Formula}\:\mathrm{and}\:\mathrm{its}\:\mathrm{further}…

Question-213021

Question Number 213021 by Spillover last updated on 28/Oct/24 Commented by Ghisom last updated on 29/Oct/24 $${r}_{\mathrm{1}} =\mathrm{1}−\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}\approx.\mathrm{351153302} \\ $$$${r}_{\mathrm{2}} =\frac{\left(\mathrm{1}−\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}\right)\sqrt{\mathrm{2}}}{\mathrm{2}}\approx.\mathrm{165910681} \\ $$$$\frac{{r}_{\mathrm{1}} }{{r}_{\mathrm{2}} }=\mathrm{2}−\sqrt{\mathrm{2}}+\mathrm{2}\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}\approx\mathrm{2}.\mathrm{11652017}…

Question-212991

Question Number 212991 by efronzo1 last updated on 28/Oct/24 $$\:\:\:\:\:\underbrace{\downharpoonleft\underline{}\:} \\ $$ Answered by Frix last updated on 28/Oct/24 $${H}\left({n}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:{k}!\left({k}^{\mathrm{2}} +{k}+\mathrm{1}\right) \\ $$$$\frac{{H}\left({n}\right)+\mathrm{1}}{\left({n}+\mathrm{1}\right)!}={n}+\mathrm{1}\:\:\:\:\:\left[\mathrm{test}\:\mathrm{it}\:\mathrm{for}\:{n}=\mathrm{1},\:\mathrm{2},\:\mathrm{3},…\right]…

can-t-find-coefficient-f-n-of-Y-z-formal-power-series-of-Y-z-is-Y-z-h-0-Y-h-h-z-h-But-can-t-generalize-coeff-Y-h-series-representation-

Question Number 213007 by issac last updated on 30/Oct/24 $$\mathrm{can}'\mathrm{t}\:\mathrm{find}\:\:\mathrm{coefficient}\:{f}^{\left({n}\right)} \left(\alpha\right)\:\mathrm{of}\:{Y}_{\nu} \left({z}\right) \\ $$$$\mathrm{formal}\:\mathrm{power}\:\mathrm{series}\:\mathrm{of}\:{Y}_{\nu} \left({z}\right)\:\mathrm{is} \\ $$$${Y}_{\nu} \left({z}\right)=\underset{{h}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{{Y}_{\nu} ^{\left({h}\right)} \left(\alpha\right)}{{h}!}\left({z}−\alpha\right)^{{h}} \\ $$$${But}..\:\mathrm{can}'\mathrm{t}\:\mathrm{generalize}\:\mathrm{coeff}\:{Y}_{\nu} ^{\left({h}\right)}…

f-x-3-x-1-f-x-3-1-x-x-x-1-f-x-

Question Number 213000 by golsendro last updated on 28/Oct/24 $$\:\:\:\mathrm{f}\left(\frac{\mathrm{x}−\mathrm{3}}{\mathrm{x}+\mathrm{1}}\right)\:+\:\mathrm{f}\left(\frac{\mathrm{x}+\mathrm{3}}{\mathrm{1}−\mathrm{x}}\right)\:=\:\mathrm{x}\:,\:\mathrm{x}\neq\:\pm\:\mathrm{1} \\ $$$$\:\:\:\mathrm{f}\left(\mathrm{x}\right)=? \\ $$ Answered by Ghisom last updated on 28/Oct/24 $$\frac{{u}−\mathrm{3}}{{u}+\mathrm{1}}={v}\:\Leftrightarrow\:{u}=\frac{{v}+\mathrm{3}}{\mathrm{1}−{v}} \\ $$$$\mathrm{2}{f}\left({x}\right)=\frac{{x}−\mathrm{3}}{{x}+\mathrm{1}}+\frac{{x}+\mathrm{3}}{\mathrm{1}−{x}}−{x} \\…

52-6-43-3-2-52-6-43-3-2-18-

Question Number 213002 by efronzo1 last updated on 28/Oct/24 $$\:\:\frac{\left(\mathrm{52}+\mathrm{6}\sqrt{\mathrm{43}}\:\right)^{\mathrm{3}/\mathrm{2}} −\left(\mathrm{52}−\mathrm{6}\sqrt{\mathrm{43}}\right)^{\mathrm{3}/\mathrm{2}} }{\mathrm{18}}=? \\ $$ Answered by Rasheed.Sindhi last updated on 28/Oct/24 $$\:\:\frac{\left(\mathrm{52}+\mathrm{6}\sqrt{\mathrm{43}}\:\right)^{\mathrm{3}/\mathrm{2}} −\left(\mathrm{52}−\mathrm{6}\sqrt{\mathrm{43}}\right)^{\mathrm{3}/\mathrm{2}} }{\mathrm{18}}=? \\…