Menu Close

Author: Tinku Tara

Let-I-n-0-n-a-coshx-a-sinhx-dx-with-0-lt-a-lt-1-and-define-I-lim-n-I-n-Does-I-exist-

Question Number 4156 by Yozzii last updated on 30/Dec/15 $${Let}\:{I}\left({n}\right)=\int_{\mathrm{0}} ^{{n}} \left\{\sqrt{{a}+{coshx}}−\sqrt{{a}+{sinhx}}\right\}{dx} \\ $$$${with}\:\mathrm{0}<{a}<\mathrm{1}\:{and}\:{define}\:{I}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{I}\left({n}\right). \\ $$$${Does}\:{I}\:{exist}?\: \\ $$ Commented by 123456 last updated on…

Limit-a-lim-x-pi-tan-1-tan-2-x-2-b-lim-x-1-108-x-2-2x-x-1-3-x-3-1-3-x-1-

Question Number 135223 by benjo_mathlover last updated on 11/Mar/21 $${Limit}\: \\ $$$$\left({a}\right)\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{tan}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)=? \\ $$$$\left({b}\right)\:\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{108}\left({x}^{\mathrm{2}} +\mathrm{2}{x}\right)\left({x}+\mathrm{1}\right)^{\mathrm{3}} }{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{1}\right)}=? \\ $$ Answered…

lim-x-3-x-2-9-x-3-

Question Number 135216 by mohammad17 last updated on 11/Mar/21 $${lim}_{{x}\rightarrow\mathrm{3}^{+} } \frac{\left[{x}\right]^{\mathrm{2}} −\mathrm{9}}{{x}−\mathrm{3}} \\ $$ Answered by Olaf last updated on 11/Mar/21 $$\underset{{x}\rightarrow\mathrm{3}^{+} } {\mathrm{lim}}\:\frac{\left[{x}\right]^{\mathrm{2}}…

f-x-x-sinx-0-lt-x-lt-pi-2-find-f-x-

Question Number 69680 by 20190927 last updated on 26/Sep/19 $$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{sinx}} \:\:,\:\mathrm{0}<\mathrm{x}<\frac{\pi}{\mathrm{2}}\:\:\:\mathrm{find}\:\mathrm{f}'\left(\mathrm{x}\right) \\ $$ Answered by MJS last updated on 26/Sep/19 $$\frac{{d}}{{dx}}\left[{u}^{{v}} \right]={u}^{{v}} \left(\frac{{u}'{v}}{{u}}+{v}'\mathrm{ln}\:{u}\right) \\ $$$$\Rightarrow…

calculus-preliminary-Q-f-x-2-x-2-x-f-1-x-solution-y-2-x-2-x-y-2-2x-1-2-x-2-2x-y2-x-1-0-2-x-t-

Question Number 135215 by mnjuly1970 last updated on 11/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..{calculus}\:{preliminary}…. \\ $$$$\:\:\:{Q}:\:{f}\left({x}\right)=\mathrm{2}^{{x}} −\mathrm{2}^{−{x}} \:\Rightarrow\:{f}^{\:−\mathrm{1}} \left({x}\right)=??? \\ $$$$\:\:{solution}: \\ $$$$\:\:\:\:\:{y}=\mathrm{2}^{{x}} −\mathrm{2}^{−{x}} \:\:\:….. \\ $$$$\:\:\:\:\:\:{y}=\frac{\mathrm{2}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{2}^{{x}} }\:\Rightarrow\mathrm{2}^{\mathrm{2}{x}}…

Four-persons-a-b-c-d-are-standing-at-four-vertices-of-square-ABCD-All-four-start-moving-simultaneously-such-a-is-always-moving-towards-b-on-a-straight-line-between-a-and-b-Similary-b-is-always-mo

Question Number 4140 by prakash jain last updated on 29/Dec/15 $$\mathrm{Four}\:\mathrm{persons}\:\mathrm{a},\:\mathrm{b},\:\mathrm{c},\:\mathrm{d}\:\mathrm{are}\:\mathrm{standing}\:\mathrm{at}\:\mathrm{four} \\ $$$$\mathrm{vertices}\:\mathrm{of}\:\mathrm{square}\:\mathrm{ABCD}. \\ $$$$\mathrm{All}\:\mathrm{four}\:\mathrm{start}\:\mathrm{moving}\:\mathrm{simultaneously}\:\mathrm{such} \\ $$$$\boldsymbol{\mathrm{a}}\:\mathrm{is}\:\mathrm{always}\:\mathrm{moving}\:\mathrm{towards}\:\boldsymbol{\mathrm{b}}\:\mathrm{on}\:\mathrm{a}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\mathrm{between}\:\boldsymbol{\mathrm{a}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}}.\:\mathrm{Similary}\:\boldsymbol{\mathrm{b}}\:\mathrm{is}\:\mathrm{always} \\ $$$$\mathrm{moving}\:\mathrm{directly}\:\mathrm{towards}\:\boldsymbol{\mathrm{c}},\:\boldsymbol{\mathrm{c}}\:\mathrm{is}\:\mathrm{directly} \\ $$$$\mathrm{moving}\:\mathrm{towards}\:\boldsymbol{\mathrm{d}}\:\mathrm{and}\:\boldsymbol{\mathrm{d}}\:\mathrm{is}\:\mathrm{directly}\:\mathrm{moving} \\ $$$$\mathrm{towards}\:\boldsymbol{\mathrm{a}}.…