Question Number 69662 by aliesam last updated on 26/Sep/19 $${prove}\:{that} \\ $$$$ \\ $$$$\frac{\mathrm{2}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{3}} +\mathrm{1}}\:+\:\frac{{x}^{\mathrm{3}} +\mathrm{1}}{{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}\:=\:\mathrm{2} \\ $$ Answered by…
Question Number 135194 by mohammad17 last updated on 11/Mar/21 $${if}\:{the}\:{function}\:{f}\:{is}\:{analytic}\:{function}\: \\ $$$${inside}\:\mid{z}\mid<\mathrm{5}\:{and}\:\mid{f}\left({z}\right)\mid\leqslant\mathrm{10}\:\forall{z}\:{on}\:{the} \\ $$$${circle}\:\mid{z}−\mathrm{1}\mid=\mathrm{2}\:{find}\: \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\mid{f}^{\:\mathrm{2}} \left(\mathrm{1}\right)\mid \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\mid{f}^{\:\mathrm{3}} \left(\mathrm{0}\right)\mid \\…
Question Number 135188 by SLVR last updated on 11/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 4118 by Filup last updated on 29/Dec/15 $$\mathrm{Does}\:\mathrm{a}\:\mathrm{function}\:{f}\left({x}\right)\:\mathrm{exist} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{for} \\ $$$${f}^{\:\left({n}\right)} \left({x}\right)=\frac{{d}^{{n}} {f}}{{dx}^{{n}} } \\ $$$$\mathrm{That}: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\underset{{n}\rightarrow{k}} {\mathrm{lim}}\:{f}^{\:\left({n}\right)} \left({x}\right)={k} \\ $$$$\boldsymbol{\mathrm{and}}…
Question Number 135191 by liberty last updated on 11/Mar/21 $$\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{yz}\:=\:\mathrm{3}}\\{\mathrm{y}^{\mathrm{2}} −\:\mathrm{zx}\:=\:\mathrm{5}}\\{\mathrm{z}^{\mathrm{2}} −\mathrm{xy}\:=\:−\mathrm{1}}\end{cases} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\:,\mathrm{y}\:\mathrm{and}\:\mathrm{z}. \\ $$ Answered by MJS_new last updated on 11/Mar/21 $${y}={px}\wedge{z}={qx}…
Question Number 135190 by liberty last updated on 11/Mar/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{x}} \:\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{t}^{\mathrm{4}} +\mathrm{1}}\:\mathrm{dt}\:? \\ $$$$ \\ $$ Answered by metamorfose last updated…
Question Number 4116 by Filup last updated on 29/Dec/15 $$\mathrm{For}:\:{f}\left({x}\right)=\mid{ax}^{{n}} +{b}\mid \\ $$$$\mathrm{when}\:{f}\left(\alpha\right)\:\mathrm{o}\:{f}\left(\beta\right)\:\mathrm{is}\:\mathrm{continuous}, \\ $$$$\mathrm{Does}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{a}\:\mathrm{solution}: \\ $$$${S}=\int_{\alpha} ^{\:\beta} {f}\left({x}\right){dx} \\ $$$$\alpha<\beta \\ $$ Commented by…
Question Number 135187 by BHOOPENDRA last updated on 11/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 135181 by liberty last updated on 11/Mar/21 $$\mathrm{A}\:\mathrm{bag}\:\mathrm{has}\:\mathrm{4}\:\mathrm{red}\:\mathrm{marbles},\:\mathrm{5}\:\mathrm{white}\: \\ $$$$\mathrm{marbles}\:,\:\mathrm{and}\:\mathrm{6}\:\mathrm{blue}\:\mathrm{marbles}.\:\mathrm{Three} \\ $$$$\mathrm{marbles}\:\mathrm{are}\:\mathrm{drawn}\:\mathrm{from}\:\mathrm{the}\:\mathrm{bag},\:\left(\mathrm{without}\right. \\ $$$$\left.\mathrm{replacement}\right)\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{that}\:\mathrm{they}\:\mathrm{are}\:\mathrm{all}\:\mathrm{the}\:\mathrm{same}\:\mathrm{color}\:?\: \\ $$ Answered by EDWIN88 last updated…
Question Number 135180 by bemath last updated on 11/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com