Menu Close

Author: Tinku Tara

without-using-lhospital-please-prove-that-lim-x-0-x-sin-x-x-3-1-6-I-want-every-method-possible-because-someone-challenge-me-

Question Number 69607 by malwaan last updated on 25/Sep/19 $$\boldsymbol{{without}}\:\boldsymbol{{using}}\:\boldsymbol{{lhospital}}\:\boldsymbol{{please}} \\ $$$$\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\:\frac{\boldsymbol{{x}}−\boldsymbol{{sin}}\:\boldsymbol{{x}}}{\boldsymbol{{x}}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\boldsymbol{{I}}\:\boldsymbol{{want}}\:\boldsymbol{{every}}\:\boldsymbol{{method}} \\ $$$$\boldsymbol{{possible}}\:\boldsymbol{{because}}\:\boldsymbol{{someone}} \\ $$$$\boldsymbol{{challenge}}\:\boldsymbol{{me}}\: \\ $$ Commented…

nice-calculus-please-calculate-n-1-H-n-2-n-2-

Question Number 135143 by mnjuly1970 last updated on 10/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:\:{calculus}… \\ $$$$\:\:\:\:\:\:\:\:{please}\:\:{calculate}:\downarrow\downarrow\downarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\::::\:\:\boldsymbol{\phi}\overset{??} {=}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} ^{\:^{\mathrm{2}} } }{{n}^{\mathrm{2}} }\:\: \\ $$$$\:\:\:\:\:\: \\ $$…

Question-4067

Question Number 4067 by Yozzii last updated on 27/Dec/15 Commented by Yozzii last updated on 27/Dec/15 $${I}\:{don}'{t}\:{know}\:{what}\:{to}\:{do}\:{for}\:{the}\:{last} \\ $$$${sentence}.\:{What}\:{equation}\:{satisfies} \\ $$$$\mathrm{2}{x}_{\mathrm{1}} +{x}_{\mathrm{2}} ?\: \\ $$…

Question-69597

Question Number 69597 by ozodbek last updated on 25/Sep/19 Commented by mathmax by abdo last updated on 25/Sep/19 $${generally}\:{let}\:{find}\:{f}\left({a}\right)\:=\int\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$${changement}\:{x}\:={ash}\left({t}\right)\:{give}\:{f}\left({a}\right)=\int{ach}\left({t}\right){ach}\left({t}\right){dt} \\ $$$$={a}^{\mathrm{2}}…

Question-69594

Question Number 69594 by ahmadshahhimat775@gmail.com last updated on 25/Sep/19 Answered by MJS last updated on 25/Sep/19 $$\mathrm{2}\leqslant{n}\leqslant\mathrm{4}:\:\mathrm{2}^{{n}!} <\mathrm{2}^{{n}} ! \\ $$$$\mathrm{5}\leqslant{n}:\:\mathrm{2}^{{n}!} >\mathrm{2}^{{n}} ! \\ $$$$\mathrm{ln}\:\mathrm{2}^{{n}!}…

Question-69593

Question Number 69593 by ahmadshahhimat775@gmail.com last updated on 25/Sep/19 Commented by mathmax by abdo last updated on 25/Sep/19 $${let}\:{f}\left({x}\right)\:=\frac{\sqrt{\mathrm{6}−{x}}−\mathrm{2}}{\mathrm{3}−\sqrt{\mathrm{11}−{x}}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{2}} \:{f}\left({x}\right)\:={lim}_{{x}\rightarrow\mathrm{2}} \:\:\:\:\:\frac{\left(\sqrt{\mathrm{6}−{x}}−\mathrm{2}\right)\left(\sqrt{\mathrm{6}−{x}}+\mathrm{2}\right)\left(\mathrm{3}+\sqrt{\mathrm{11}−{x}}\right)}{\left(\mathrm{3}−\sqrt{\mathrm{11}−{x}}\right)\left(\mathrm{3}+\sqrt{\mathrm{11}−{x}}\right)\left(\sqrt{\mathrm{6}−{x}}+\mathrm{2}\right)} \\ $$$$={lim}_{{x}\rightarrow\mathrm{2}}…