Menu Close

Author: Tinku Tara

Question-135054

Question Number 135054 by rexford last updated on 09/Mar/21 Commented by mr W last updated on 10/Mar/21 $${there}\:{are}\:{three}\:{possible}\:{answers}: \\ $$$${in}\:{plane}:\:\mid{a}\mid=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}} \\ $$$${in}\:{space}:\:\mid{a}\mid=\mathrm{1}\:{or}\:\sqrt{\mathrm{3}} \\ $$ Commented…

Define-the-sequence-a-n-by-the-recursive-formula-a-n-1-ca-n-nr-n-1-n-Z-n-1-with-a-1-h-and-c-r-h-C-c-r-0-Find-a-n-in-terms-of-n-

Question Number 3974 by Yozzii last updated on 26/Dec/15 $${Define}\:{the}\:{sequence}\:\left\{{a}_{{n}} \right\}\:{by}\:{the} \\ $$$${recursive}\:{formula}\: \\ $$$$\:\:\:{a}_{{n}+\mathrm{1}} ={ca}_{{n}} −{nr}^{{n}−\mathrm{1}} \:\:\:\left({n}\in\mathbb{Z},{n}\geqslant\mathrm{1}\right) \\ $$$${with}\:{a}_{\mathrm{1}} ={h}\:{and}\:{c},{r},{h}\in\mathbb{C},\:{c},{r}\neq\mathrm{0}. \\ $$$${Find}\:{a}_{{n}} \:{in}\:{terms}\:{of}\:{n}. \\…

3sinx-4cosx-4sinx-3cosx-dx-

Question Number 69502 by 20190927 last updated on 24/Sep/19 $$\int\frac{\mathrm{3sinx}+\mathrm{4cosx}}{\mathrm{4sinx}+\mathrm{3cosx}}\mathrm{dx} \\ $$ Commented by mathmax by abdo last updated on 24/Sep/19 $${let}\:{I}\:=\int\:\:\frac{\mathrm{3}{sinx}\:+\mathrm{4}{cosx}}{\mathrm{4}{sinx}\:+\mathrm{3}{cosx}}{dx}\:\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${I}\:=\int\frac{\mathrm{3}\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{4}\frac{\mathrm{1}−{t}^{\mathrm{2}}…

Question-69500

Question Number 69500 by TawaTawa last updated on 24/Sep/19 Answered by MJS last updated on 24/Sep/19 $$\mathrm{the}\:\mathrm{shape}\:\mathrm{of}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{looks}\:\mathrm{like}\:\mathrm{a}\:\mathrm{modified} \\ $$$${f}\left({x}\right)={x}^{\mathrm{4}} −{x}^{\mathrm{2}} \\ $$$${f}\left(\mathrm{0}\right)\approx−\mathrm{7}\:\Rightarrow\:{f}\left({x}\right)\approx{x}^{\mathrm{4}} −{x}^{\mathrm{2}} −\mathrm{7} \\…

Find-det-A-where-A-is-an-n-n-matrix-of-the-form-A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

Question Number 3965 by Yozzii last updated on 25/Dec/15 $${Find}\:{det}\left({A}\right)\:{where}\:{A}\:{is}\:{an}\:{n}×{n}\:{matrix} \\ $$$${of}\:{the}\:{form}\: \\ $$$${A}=\begin{pmatrix}{\lambda}&{\mathrm{1}}&{\mathrm{1}}&{\ldots}&{\ldots}&{\ldots}&{\ldots}&{\mathrm{1}}\\{\mathrm{1}}&{\lambda}&{\mathrm{1}}&{\ldots}&{\ldots}&{\ldots}&{\ldots}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\lambda}&{\ldots}&{\ldots}&{\ldots}&{\ldots}&{\mathrm{1}}\\{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\ldots}&{\ldots}&{\ldots}&{\mathrm{1}}\\{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\ldots}&{\ldots}&{\mathrm{1}}\\{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\ldots}&{\mathrm{1}}\\{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\lambda}\end{pmatrix} \\ $$$$\lambda={constant}\:{for}\:{leading}\:{diagonal}\:{elements} \\ $$$$\mathrm{1}{s}\:{for}\:{all}\:{other}\:{elements}. \\ $$$$ \\ $$ Commented by 123456…