Menu Close

Author: Tinku Tara

Question-7803

Question Number 7803 by Tawakalitu. last updated on 16/Sep/16 Answered by Rasheed Soomro last updated on 16/Sep/16 $$\left(\frac{\mathrm{1}×\mathrm{3}×\mathrm{5}×…×\mathrm{2015}}{\mathrm{2}×\mathrm{4}×\mathrm{6}×…×\mathrm{2016}}\right)^{\mathrm{1}/\mathrm{4}} \\ $$$$\left(\frac{\mathrm{2015}!/\left(\mathrm{2}.\mathrm{4}.\mathrm{6}…..\mathrm{2014}\right.}{\mathrm{2}.\mathrm{4}.\mathrm{6}…..\mathrm{2016}}\right)^{\mathrm{1}/\mathrm{4}} \\ $$$$\left(\frac{\mathrm{2015}!}{\left(\mathrm{2}.\mathrm{4}.\mathrm{6}….\mathrm{2014}\right)\left(\mathrm{2}.\mathrm{4}.\mathrm{6}…..\mathrm{2016}\right)}\right)^{\mathrm{1}/\mathrm{4}} \\ $$$$\left(\frac{\mathrm{2015}!}{\left(\mathrm{2}.\mathrm{4}.\mathrm{6}….\mathrm{2014}\right)^{\mathrm{2}} \left(\mathrm{2015}.\mathrm{2016}\right)}\right)^{\mathrm{1}/\mathrm{4}}…

Question-138872

Question Number 138872 by peter frank last updated on 19/Apr/21 Answered by bramlexs22 last updated on 19/Apr/21 $$\mathrm{p}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} +\left(\mathrm{A}−\mathrm{7}\right)\mathrm{x}^{\mathrm{2}} +\mathrm{Ax}−\mathrm{8} \\ $$$$\mathrm{p}\left(\mathrm{x}\right)=\mathrm{0}\Rightarrow\mathrm{x}^{\mathrm{3}} +\left(\mathrm{A}−\mathrm{7}\right)\mathrm{x}^{\mathrm{2}} +\mathrm{Ax}−\mathrm{8}=\mathrm{0} \\…

eplcit-f-x-0-1-ln-x-t-t-2-dt-with-x-gt-1-4-2-calculate-0-1-ln-t-2-t-2-dt-

Question Number 73335 by mathmax by abdo last updated on 10/Nov/19 $${eplcit}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}+{t}+{t}^{\mathrm{2}} \right){dt}\:\:\:\:\:\:{with}\:{x}>\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({t}^{\mathrm{2}} \:+{t}\:+\sqrt{\mathrm{2}}\right){dt} \\ $$ Commented by mathmax…

x-2-x-3-5-dx-

Question Number 7798 by Tawakalitu. last updated on 16/Sep/16 $$\int\frac{{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{3}} \:+\:\mathrm{5}}}\:{dx} \\ $$ Commented by sou1618 last updated on 16/Sep/16 $$\frac{{d}}{{dx}}\left(\sqrt{{x}^{\mathrm{3}} +\mathrm{5}}\right)=\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}\sqrt{{x}^{\mathrm{3}} +\mathrm{5}}}…

find-lim-x-0-ln-2-cos-2x-ln-1-xsin-3x-

Question Number 73330 by mathmax by abdo last updated on 10/Nov/19 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{ln}\left(\mathrm{2}−{cos}\left(\mathrm{2}{x}\right)\right)}{{ln}\left(\mathrm{1}+{xsin}\left(\mathrm{3}{x}\right)\right)} \\ $$ Commented by mathmax by abdo last updated on 11/Nov/19 $${let}\:{f}\left({x}\right)=\frac{{ln}\left(\mathrm{2}−{cos}\left(\mathrm{2}{x}\right)\right)}{{ln}\left(\mathrm{1}+{xsin}\left(\mathrm{3}{x}\right)\right)}\:{we}\:{have}\:{cos}\left(\mathrm{2}{x}\right)\sim\mathrm{1}−\frac{\left(\mathrm{2}{x}\right)^{\mathrm{2}}…