Menu Close

Author: Tinku Tara

to-Sir-Aifour-we-can-construct-polynomes-of-both-3-rd-and-4-th-degree-in-a-way-that-the-constants-are-Z-or-Q-and-the-solutions-are-not-trivial-i-e-t-t-2-t-2-0-t-x-

Question Number 69479 by MJS last updated on 24/Sep/19 $$\mathrm{to}\:\mathrm{Sir}\:\mathrm{Aifour}: \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{construct}\:\mathrm{polynomes}\:\mathrm{of}\:\mathrm{both}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{and} \\ $$$$\mathrm{4}^{\mathrm{th}} \:\mathrm{degree}\:\mathrm{in}\:\mathrm{a}\:\mathrm{way}\:\mathrm{that}\:\mathrm{the}\:\mathrm{constants}\:\mathrm{are} \\ $$$$\in\mathbb{Z}\:\mathrm{or}\:\in\mathbb{Q}\:\mathrm{and}\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{are}\:\mathrm{not}\:\mathrm{trivial} \\ $$$$\mathrm{i}.\mathrm{e}. \\ $$$$\left({t}−\alpha\right)\left({t}+\frac{\alpha}{\mathrm{2}}−\sqrt{\beta}\right)\left({t}+\frac{\alpha}{\mathrm{2}}+\sqrt{\beta}\right)=\mathrm{0}\wedge{t}={x}+\frac{\gamma}{\mathrm{3}} \\ $$$$\Leftrightarrow \\…

y-log-e-x-m-sa-r-2-yr-2-log-e-x-m-sa-e-yr-2-x-m-sa-me-rry-x-mas-Merry-christmas-everyone-Let-our-venture-for-knowledge-continue-through-to-the-new-year-

Question Number 3930 by Filup last updated on 25/Dec/15 $${y}=\frac{\mathrm{log}_{{e}} \left(\frac{{x}}{{m}}−{sa}\right)}{{r}^{\mathrm{2}} } \\ $$$${yr}^{\mathrm{2}} =\mathrm{log}_{\mathrm{e}} \left(\frac{{x}}{{m}}−{sa}\right) \\ $$$${e}^{{yr}^{\mathrm{2}} } =\frac{{x}}{{m}}−{sa} \\ $$$${me}^{{rry}} ={x}−{mas} \\ $$$$…

For-S-1-1-2-1-3-1-n-S-H-n-Harmonic-sequence-H-n-i-1-n-1-i-Can-you-solve-the-partial-sum-

Question Number 3929 by Filup last updated on 25/Dec/15 $$\mathrm{For}: \\ $$$${S}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}} \\ $$$${S}={H}_{{n}} \:\:\:\:{Harmonic}\:{sequence} \\ $$$${H}_{{n}} =\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{i}} \\ $$$${Can}\:{you}\:{solve}\:{the}\:{partial}\:{sum}? \\ $$ Commented…

find-the-equation-of-the-circle-which-ends-one-of-the-diameters-of-two-points-p-1-2-3-and-p-2-4-5-

Question Number 69462 by mhmd last updated on 23/Sep/19 $$ \\ $$$${find}\:{the}\:{equation}\:{of}\:{the}\:{circle}\:{which}\:{ends}\:{one}\:{of}\:{the}\:{diameters}\:{of}\:{two}\:{points}\:{p}_{\mathrm{1}} \left(−\mathrm{2},\mathrm{3}\right)\:{and}\:{p}_{\mathrm{2}} \left(\mathrm{4},\mathrm{5}\right) \\ $$ Commented by mathmax by abdo last updated on 23/Sep/19…

5-integers-are-selected-randomly-from-Z-what-is-the-probability-that-at-least-one-of-them-is-divisible-by-5-

Question Number 3927 by prakash jain last updated on 24/Dec/15 $$\mathrm{5}\:\mathrm{integers}\:\mathrm{are}\:\mathrm{selected}\:\mathrm{randomly}\:\mathrm{from}\:\mathbb{Z}^{+} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one} \\ $$$$\mathrm{of}\:\mathrm{them}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{5}. \\ $$ Commented by prakash jain last updated on 26/Dec/15…

find-the-equation-of-the-circle-whose-center-is-the-origin-and-touches-the-line-3x-4y-15-0-

Question Number 69460 by mhmd last updated on 23/Sep/19 $${find}\:{the}\:{equation}\:{of}\:{the}\:{circle}\:{whose}\:{center}\:{is}\:{the}\:{origin}\:{and}\:{touches}\:{the}\:{line}\:\mathrm{3}{x}−\mathrm{4}{y}−\mathrm{15}=\mathrm{0} \\ $$ Commented by mathmax by abdo last updated on 23/Sep/19 $${equation}\:{of}\:{circle}\:{is}\:\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:={r}^{\mathrm{2}} \:\:{and}\:{r}\:={d}\left(\mathrm{0},{D}\right)…

Let-I-z-pi-tan-z-z-4-dz-J-z-pi-cos-z-z-4-dz-and-K-z-pi-cos-Re-z-cos-Im-z-z-4-dz-Show-that-I-J-2-ipi-Show-that-J-K-

Question Number 134998 by snipers237 last updated on 09/Mar/21 $$\:\:\:{Let}\:\:{I}=\:\int_{\mid{z}\mid=\pi} \frac{{tan}\left(\overset{−} {{z}}\right)}{{z}−\mathrm{4}}\:{dz}\:\: \\ $$$$\:{J}=\int_{\mid{z}\mid=\pi} \frac{{cos}\left(\overset{−} {{z}}\right)}{{z}−\mathrm{4}}\:{dz}\:\:\:{and}\:\:{K}=\int_{\mid{z}\mid=\pi} \frac{{cos}\left({Re}\left({z}\right)\right){cos}\left({Im}\left({z}\right)\right)}{{z}−\mathrm{4}}{dz} \\ $$$$\:{Show}\:{that}\:\:{I}={J}\sqrt{\mathrm{2}}=−{i}\pi \\ $$$$\:{Show}\:{that}\:\:{J}={K} \\ $$ Terms of…