Question Number 134951 by bobhans last updated on 09/Mar/21 $$\underline{\mathrm{Geometry}} \\ $$What are the equations for two lines through the origin that are tangent to…
Question Number 69412 by ahmadshah last updated on 23/Sep/19 Commented by Rasheed.Sindhi last updated on 23/Sep/19 $${x}=\mathrm{4} \\ $$ Answered by mr W last updated…
Question Number 3877 by Rasheed Soomro last updated on 23/Dec/15 $$\mathcal{W}{hat}\:{is}\:{the}\:{area}\:{of}\:\:{overlapping} \\ $$$${region}\:{of}\:{two}\:{circles}\:{having}\:{radii} \\ $$$$\boldsymbol{\mathrm{r}}_{\mathrm{1}} \:{and}\:\boldsymbol{\mathrm{r}}_{\mathrm{2}} \:{when}\:{the}\:{distance}\:{between} \\ $$$${their}\:{centres}\:{is}\:\:\boldsymbol{\mathrm{c}},\:{given}\:{that}\:\boldsymbol{\mathrm{r}}_{\mathrm{1}} +\boldsymbol{\mathrm{r}}_{\mathrm{2}} >\boldsymbol{\mathrm{c}}. \\ $$ Commented by…
Question Number 69413 by ahmadshah last updated on 23/Sep/19 Commented by kaivan.ahmadi last updated on 23/Sep/19 $$\frac{\left(\mathrm{5}×\frac{\mathrm{4}}{\mathrm{5}}\right)^{{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{4}} }{\mathrm{5}^{{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{5}} }=\frac{\mathrm{5}^{{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{4}} ×\left(\frac{\mathrm{4}}{\mathrm{5}}\right)^{{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{4}} }{\mathrm{5}^{{log}_{\frac{\mathrm{5}}{\mathrm{4}}}…
Question Number 69411 by ahmadshah last updated on 23/Sep/19 Commented by Prithwish sen last updated on 23/Sep/19 $$\mathrm{h}+\mathrm{t}−\mathrm{c}=\mathrm{85}….\left(\mathrm{i}\right) \\ $$$$\mathrm{h}+\mathrm{t}+\mathrm{c}=\mathrm{155}…\left(\mathrm{ii}\right) \\ $$$$\left(\mathrm{ii}\right)−\left(\mathrm{i}\right)\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{get}}\:\:\boldsymbol{\mathrm{c}}=\:\mathrm{35}\:\boldsymbol{\mathrm{cm}}\:\: \\ $$ Terms…
Question Number 3874 by Filup last updated on 23/Dec/15 $${x}>{y} \\ $$$${y}^{\mathrm{2}} >{x}^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Does}\:\mathrm{such}\:\mathrm{a}\:\mathrm{pairing}\:\mathrm{exist}? \\ $$$$\mathrm{How}\:\mathrm{can}\:\mathrm{you}\:\mathrm{prove}\:\mathrm{it}? \\ $$ Commented by Yozzii last…
Question Number 134947 by bobhans last updated on 08/Mar/21 $$\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\left(\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} \:}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}}\:\right)\mathrm{dx}\:?\: \\ $$ Answered by EDWIN88 last updated on 09/Mar/21 $$\mathrm{I}=\int_{\mathrm{0}} ^{\:\mathrm{2}}…
Question Number 134941 by I want to learn more last updated on 08/Mar/21 Commented by I want to learn more last updated on 09/Mar/21 Terms…
Question Number 134940 by Oyins last updated on 08/Mar/21 $${let}\:{X}=\mathbb{R}\:{wth}\:{the}\:{usual}\:{metric}.\:{prove}\:{that}\:{the}\:{open} \\ $$$${and}\:{bounded}\:{interval}\:{A}=\left(\mathrm{1},\mathrm{2}\right)\:{is}\:{an}\:{open}\:{set}\:{in}\:\mathbb{R}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 134937 by Study last updated on 08/Mar/21 $${li}\underset{\frac{\mathrm{1}}{{x}}\rightarrow{ln}\frac{\mathrm{1}}{\mathrm{2}}} {{m}}\frac{{ln}\mathrm{2}+{ln}\mathrm{2}\centerdot{cosx}}{{cos}^{\mathrm{2}} {ln}\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}}=? \\ $$ Commented by Study last updated on 09/Mar/21 $${plz}\:{help}\:{me} \\ $$ Terms…