Question Number 3843 by Rasheed Soomro last updated on 22/Dec/15 $$\mathcal{L}{et}\:{the}\:{side}\:{of}\:{the}\:{following}\:{mentioned} \\ $$$${figures}\:{is}\:\boldsymbol{\mathrm{s}}: \\ $$$${The}\:{area}\:{of}\:{square}\:{is}\:\boldsymbol{\mathrm{s}}^{\mathrm{2}} ,\:{the}\:\mathrm{3}{D}\:{area}\left({volume}\right) \\ $$$${of}\:{a}\:{cube}\:{is}\:\boldsymbol{\mathrm{s}}^{\mathrm{3}} ,{the}\:\mathrm{4}{D}\:{area}/{volume}\:{of}\:\mathrm{4}{D} \\ $$$${hypercube}\:{can}\:{be}\:{said}\:\boldsymbol{\mathrm{s}}^{\mathrm{4}} \:{and}\:{so}\:{on}. \\ $$$$ \\…
Question Number 134912 by bramlexs22 last updated on 08/Mar/21 $$\mathrm{Given}\:\begin{cases}{\mathrm{a}+\mathrm{b}=\mathrm{5ab}}\\{\mathrm{b}+\mathrm{c}=\mathrm{7bc}}\\{\mathrm{c}+\mathrm{a}=\mathrm{6ac}}\end{cases} \\ $$$$\mathrm{where}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\neq\:\mathrm{0}. \\ $$$$\mathrm{Find}\:\mathrm{abc} \\ $$ Answered by Ñï= last updated on 08/Mar/21 $$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\mathrm{5}\Leftrightarrow{A}+{B}=\mathrm{5} \\…
Question Number 69379 by mathmax by abdo last updated on 22/Sep/19 $${calculste}\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:\:\:{with}\:{a}>\mathrm{0} \\ $$ Commented by mathmax by abdo…
Question Number 134915 by BHOOPENDRA last updated on 08/Mar/21 Answered by Olaf last updated on 08/Mar/21 $$\mathrm{Fourier}\:: \\ $$$${a}_{\mathrm{0}} \left({f}\right)\:=\:\frac{\mathrm{1}}{\mathrm{T}}\int_{−\frac{\mathrm{T}}{\mathrm{2}}} ^{+\frac{\mathrm{T}}{\mathrm{2}}} {f}\left({t}\right){dt} \\ $$$${a}_{\mathrm{0}} \left({f}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{1}}…
Question Number 69376 by mathmax by abdo last updated on 22/Sep/19 $${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$ Commented by mathmax by abdo last…
Question Number 69377 by mathmax by abdo last updated on 22/Sep/19 $${sove}\:\:{x}^{\mathrm{2}} {y}^{'} \:\:−\left({x}^{\mathrm{3}} \:+\mathrm{1}\right){y}\:\:={sin}\left(\mathrm{2}{x}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 3840 by Rasheed Soomro last updated on 22/Dec/15 $$\mathcal{A}\:\:{semicircle}\:\:{contains}\:{a}\:{square}\:\:{of}\:\: \\ $$$${possible}\:{largest}\:{area}.{If}\:\:{s}\:\:{is}\:{the}\:{measure} \\ $$$${of}\:{the}\:{side}\:{of}\:{the}\:{square},{what}\:{is}\:{the} \\ $$$${radius}\:{of}\:{the}\:{semicircle}? \\ $$ Answered by Yozzii last updated on…
Question Number 69374 by mathmax by abdo last updated on 22/Sep/19 $${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{S}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$ Commented…
Question Number 69375 by mathmax by abdo last updated on 22/Sep/19 $${let}\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\alpha\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right){determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left(\alpha\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\…
Question Number 3838 by Rasheed Soomro last updated on 22/Dec/15 $${Show}\:{that}\:{the}\:{construction}\:{of} \\ $$$$\:\:\:\:\:\:\mathrm{the}\:\mathrm{rectangle}\:\mathrm{of}\:\mathrm{minimum}\: \\ $$$$\:\:\:\:\:\:\mathrm{perimeter}\:\mathrm{when}\:\mathrm{its}\:\mathrm{area}\:\:\mathrm{is}\:\boldsymbol{\mathrm{ab}}\: \\ $$$$\:\:\:\:\:\:\mathrm{where}\:\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{AB}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{CD}}\:\mathrm{are}\:\:\mathrm{given} \\ $$$${is}\:{possible}\:{with}\:{ruler}\:{and}\:{compass}.\:\:\:\:\: \\ $$$$ \\ $$ Commented by…