Question Number 134874 by bemath last updated on 08/Mar/21 $$\mathrm{The}\:\mathrm{two}\:\mathrm{side}\:\mathrm{of}\:\mathrm{rectangle}\:\mathrm{are} \\ $$$$\mathrm{2}{x}\:\mathrm{and}\:\left(!\mathrm{5}−\mathrm{2}{x}\right)\:\mathrm{units}\:\mathrm{respectively} \\ $$$$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of} \\ $$$$\mathrm{rectangle}\:\mathrm{will}\:\mathrm{be}\:\mathrm{maximum}? \\ $$ Commented by Ñï= last updated on 08/Mar/21…
Question Number 134871 by Raxreedoroid last updated on 08/Mar/21 $$\mathrm{What}\:\mathrm{is}\:{f}\left({x}\right)? \\ $$$$\mathrm{such}\:\mathrm{that}\:\left({f}\left({x}\right)+{f}\:'\left({x}\right)\mathrm{ln}\:{x}\right)\mathrm{ln}\:{x}=−\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 3794 by Filup last updated on 21/Dec/15 $$\mathrm{prove}\:\mathrm{or}\:\mathrm{disprove}:\:\:\:\:\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{p}_{\mathrm{1}} {i}={p}_{\mathrm{2}} \\ $$$${p}_{\mathrm{1}} ,{p}_{\mathrm{2}} \in\mathbb{P} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{np}_{\mathrm{1}} \left({n}+\mathrm{1}\right)={p}_{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right)=\frac{{p}_{\mathrm{2}} }{{p}_{\mathrm{1}}…
Question Number 3793 by 123456 last updated on 21/Dec/15 $${f}\left({x},{y}\right)=\begin{cases}{{f}\left({x}−\mathrm{1},{y}\right)+{y}}&{{x}>\mathrm{0}}\\{{f}\left({x}+{y},{y}−\mathrm{1}\right)+{x}}&{{x}\leqslant\mathrm{0}\wedge{y}>\mathrm{0}}\\{{xy}}&{{x}\leqslant\mathrm{0}\wedge{y}\leqslant\mathrm{0}}\end{cases} \\ $$$${f}\left(\mathrm{5},\mathrm{7}\right)=? \\ $$$${f}\left(\mathrm{6},\mathrm{9}\right)=?? \\ $$ Commented by prakash jain last updated on 21/Dec/15 $${y}>\mathrm{0}…
Question Number 134866 by mathmax by abdo last updated on 07/Mar/21 $$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}\left(\mathrm{nx}\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{n}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}\:\mathrm{calculate}\:\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{e}^{\mathrm{n}^{\mathrm{2}} } \mathrm{U}_{\mathrm{n}} \\ $$ Answered by…
Question Number 3789 by 123456 last updated on 21/Dec/15 $${f}\left({nx}\right)={f}\left({x}+{n}\right)−{f}\left({x}\right) \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}\left({x}\right)=? \\ $$ Commented by Rasheed Soomro last updated on 21/Dec/15 $${f}\left({nx}\right)={f}\left({x}+{n}\right)−{f}\left({x}\right)…
Question Number 134858 by mnjuly1970 last updated on 07/Mar/21 Answered by mathmax by abdo last updated on 07/Mar/21 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{lnxln}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}\right)\:\mathrm{changement}\:\mathrm{1}−\mathrm{x}=\mathrm{t}\:\mathrm{give}\:\mathrm{x}=\mathrm{1}−\mathrm{t}\:\:\left(\mathrm{t}\rightarrow\mathrm{0}^{+} \right) \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)\mathrm{ln}^{\mathrm{2}} \left(\mathrm{t}\right)\:=\mathrm{g}\left(\mathrm{t}\right)\:\mathrm{we}\:\mathrm{have} \\…
Question Number 134852 by mnjuly1970 last updated on 07/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:\:{calculus}… \\ $$$$\:\:\:\:\:\:{find}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)}{{x}\left(\mathrm{1}−{x}\right)}{dx}=? \\ $$$$ \\ $$ Answered by mnjuly1970 last updated…
Question Number 69319 by Joel122 last updated on 22/Sep/19 $$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\underset{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\:\frac{\mathrm{3}}{{x}^{\mathrm{2}} \:+\:\mathrm{2}{y}^{\mathrm{2}} } \\ $$$$\mathrm{does}\:\mathrm{not}\:\mathrm{exist} \\ $$ Commented by Joel122 last updated on…
Question Number 134854 by Polina last updated on 07/Mar/21 $$ \\ $$$$\sqrt{\boldsymbol{{x}}}\:\:\mathrm{why}\:\mathrm{the}\:\mathrm{root}\:\mathrm{is}\:\mathrm{so}\:\mathrm{thing}?\:\mathrm{How}\:\mathrm{can}\:\mathrm{i}\:\mathrm{make}\:\mathrm{it}\:\mathrm{bold}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com