Question Number 73178 by mathmax by abdo last updated on 07/Nov/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{dx} \\ $$ Answered by mind is power last updated…
Question Number 73179 by mathmax by abdo last updated on 07/Nov/19 $${caoculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 138708 by liberty last updated on 16/Apr/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{tan}\:{x}}{\left(\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{1}\right)\left(\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}−\mathrm{1}\right)}=? \\ $$ Answered by bramlexs22 last updated on 17/Apr/21 Terms of Service Privacy…
Question Number 7637 by Tawakalitu. last updated on 07/Sep/16 $$\int{x}^{{x}} \:{dx} \\ $$ Answered by FilupSmith last updated on 07/Sep/16 $${x}^{{x}} ={e}^{{x}\mathrm{ln}\left({x}\right)} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}}…
Question Number 138710 by bramlexs22 last updated on 17/Apr/21 $$\underset{\mathrm{1}} {\int}^{\:\infty} \:\frac{\mathrm{ln}\:{x}}{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{dx}\:=? \\ $$ Answered by mathmax by abdo last updated on 17/Apr/21 $$\Phi=\int_{\mathrm{1}}…
Question Number 138704 by mathdave last updated on 16/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 7630 by sandy_suhendra last updated on 06/Sep/16 Commented by Chantria Math last updated on 06/Sep/16 $${There}\:{are}\:{some}\:{false}\:{in}\:{this} \\ $$$${problem},\: \\ $$$$ \\ $$$$ \\…
Question Number 138703 by mathocean1 last updated on 16/Apr/21 $${Calculate} \\ $$$$\underset{−\frac{\pi}{\mathrm{6}}} {\overset{\mathrm{0}} {\int}}\frac{{cos}^{\mathrm{2}} {x}}{\mathrm{1}−\mathrm{2}{sinx}}{dx} \\ $$ Commented by SanyamJoshi last updated on 17/Apr/21 $${Calculate}…
Question Number 138702 by peter frank last updated on 16/Apr/21 Answered by mr W last updated on 17/Apr/21 $${y}=\mathrm{sinh}\:{x}+{k}\:\mathrm{cosh}\:{x} \\ $$$$\:\:=\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}\:\left(\frac{\mathrm{1}}{\:\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}}\mathrm{sinh}\:{x}+\frac{{k}}{\:\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}}\:\mathrm{cosh}\:{x}\right) \\…
Question Number 7628 by Tawakalitu. last updated on 06/Sep/16 $${By}\:{the}\:{use}\:{of}\:{substitution}\:\:{x}\:=\:\mu^{\mathrm{2}} ,\:{show}\:{that} \\ $$$${the}\:{legendary}\:{equation}\:, \\ $$$$\left(\mathrm{1}\:−\:\mu^{\mathrm{2}} \right){y}''\:−\:\mathrm{2}\mu{y}'\:+\:{n}\left({n}\:+\:\mathrm{1}\right){y}\:=\:\mathrm{0},\: \\ $$$${where}\:{n}\:{is}\:{a}\:{constant}\:{change}\:{to}\:{hyper}\:{geometric} \\ $$$${equation}\:.\:{hence}\:{obtain}\:{the}\:{solution}\:{to}\:{the}\: \\ $$$${resulting}\:{hyper}\:{geometric}\:{differential}\:{equation}\: \\ $$$${by}\:{way}\:{of}\:{comparison}. \\…