Menu Close

Author: Tinku Tara

Z-0-2-dx-x-1-

Question Number 134764 by bramlexs22 last updated on 07/Mar/21 $$\:\mathbb{Z}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\frac{\mathrm{dx}}{\:\sqrt{\mid\mathrm{x}−\mathrm{1}\mid}}\:? \\ $$ Answered by EDWIN88 last updated on 07/Mar/21 $$\mathbb{Z}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\frac{\mathrm{dx}}{\:\sqrt{\mid\mathrm{x}−\mathrm{1}\mid}}\:;\:\mathrm{let}\:\mathrm{u}=\mid\mathrm{x}−\mathrm{1}\mid \\…

Prove-that-p-0-1-p-4p-1-pi-argcoth-2-4-2-and-p-0-1-p-4p-3-pi-argcoth-2-4-2-

Question Number 69231 by ~ À ® @ 237 ~ last updated on 21/Sep/19 $${Prove}\:{that}\:\:\underset{{p}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\left(−\mathrm{1}\right)^{{p}} }{\mathrm{4}{p}+\mathrm{1}}\:=\:\frac{\pi−{argcoth}\left(\sqrt{\mathrm{2}}\:\right)}{\mathrm{4}\sqrt{\mathrm{2}}}\:\:{and} \\ $$$$\underset{{p}=\mathrm{0}} {\overset{\infty\:} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{p}} }{\mathrm{4}{p}+\mathrm{3}}\:=\:\frac{\pi+{argcoth}\left(\sqrt{\mathrm{2}}\:\right)}{\mathrm{4}\sqrt{\mathrm{2}}\:}\:\:\: \\ $$…

Every-equation-of-x-y-has-a-curve-in-a-plane-Does-every-curve-in-a-plane-has-an-equation-

Question Number 3693 by Rasheed Soomro last updated on 19/Dec/15 $$\mathcal{E}{very}\:{equation}\:{of}\:{x},{y}\:{has}\:{a}\:{curve}\:{in}\:{a}\:{plane}. \\ $$$$\mathcal{D}{oes}\:{every}\:{curve}\:{in}\:{a}\:{plane}\:{has}\:{an}\:{equation}? \\ $$ Commented by 123456 last updated on 19/Dec/15 $$\mathrm{i}\:\mathrm{think}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{yes} \\ $$$$\mathrm{lets}\:{f}:\mathbb{R}^{\mathrm{2}}…

a-b-c-nonnegative-real-numbers-a-2-b-2-1-b-2-c-2-1-c-2-a-2-1-2-2-a-2-b-2-c-2-1-Find-all-triplets-a-b-c-so-that-inequality-ab

Question Number 69229 by naka3546 last updated on 21/Sep/19 $${a},\:{b},\:{c}\:\:\in\:\:{nonnegative}\:\:{real}\:\:{numbers} \\ $$$$\sqrt{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:\mathrm{1}}\:+\:\sqrt{{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:+\:\mathrm{1}}\:+\:\sqrt{{c}^{\mathrm{2}} \:+\:{a}^{\mathrm{2}} \:+\:\mathrm{1}}\:\:\geqslant\:\:\mathrm{2}\:+\:\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \right)\:+\:\mathrm{1}} \\ $$$${Find}\:\:{all}\:\:{triplets}\:\left({a},\:{b},\:{c}\right)\:\:{so}\:\:{that}\:\:{inequality}\:\:{above}\:\:{hold}\:. \\ $$…