Menu Close

Author: Tinku Tara

Lets-say-we-have-an-n-gon-All-sides-are-equal-When-n-3-interior-angles-180-3-60-n-4-360-4-90-n-t-180-t-2-t-For-a-circle-essentially-an-gon-n-180lim-t-t

Question Number 3662 by Filup last updated on 18/Dec/15 $$\mathrm{Lets}\:\mathrm{say}\:\mathrm{we}\:\mathrm{have}\:\mathrm{an}\:{n}−\mathrm{gon}. \\ $$$$\mathrm{All}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{equal}. \\ $$$$ \\ $$$$\mathrm{When}\:{n}=\mathrm{3},\:\mathrm{interior}\:\mathrm{angles}\:\theta=\frac{\mathrm{180}}{\mathrm{3}} \\ $$$$\theta=\mathrm{60}° \\ $$$$ \\ $$$${n}=\mathrm{4},\:\theta=\frac{\mathrm{360}}{\mathrm{4}}=\mathrm{90}° \\ $$$$\vdots \\…

Question-69192

Question Number 69192 by TawaTawa last updated on 21/Sep/19 Answered by mr W last updated on 21/Sep/19 $${let}\:\angle{BAD}=\alpha \\ $$$${side}\:{length}\:={a} \\ $$$$\frac{{a}}{\mathrm{sin}\:\left(\mathrm{60}+\alpha\right)}=\frac{\mathrm{3}}{\mathrm{sin}\:\alpha}\:\:\:\:…\left({i}\right) \\ $$$$\frac{{a}}{\mathrm{sin}\:\left(\mathrm{60}+\mathrm{30}−\alpha\right)}=\frac{{a}}{\mathrm{cos}\:\alpha}=\frac{\mathrm{5}}{\mathrm{sin}\:\left(\mathrm{30}−\alpha\right)}\:\:\:…\left({ii}\right) \\…

Give-an-example-of-differential-equation-which-has-no-solutions-

Question Number 3656 by prakash jain last updated on 17/Dec/15 $$\mathrm{Give}\:\mathrm{an}\:\mathrm{example}\:\mathrm{of}\:\mathrm{differential}\:\mathrm{equation}\:\mathrm{which} \\ $$$$\mathrm{has}\:\mathrm{no}\:\mathrm{solutions}. \\ $$ Answered by Filup last updated on 18/Dec/15 $${Weierstrass}\:{function} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{fuction}\:\mathrm{that}\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{at}\:\mathrm{all}…

f-x-p-q-x-p-q-p-Z-q-Z-q-0-p-q-1-x-10x-overtise-does-f-is-continuous-

Question Number 3655 by 123456 last updated on 17/Dec/15 $${f}\left({x}\right)=\begin{cases}{{p}+{q}}&{{x}=\frac{{p}}{{q}},{p}\in\mathbb{Z},{q}\in\mathbb{Z},{q}\neq\mathrm{0},\left({p},{q}\right)=\mathrm{1}}\\{\lfloor{x}\rfloor+\lfloor\mathrm{10}{x}\rfloor}&{\mathrm{overtise}}\end{cases} \\ $$$$\mathrm{does}\:{f}\:\mathrm{is}\:\mathrm{continuous}? \\ $$ Commented by prakash jain last updated on 18/Dec/15 $${choose}\:{p}\notin\mathbb{Q},\:\mathrm{say}\:{p}=\pi \\ $$$$\mathrm{Checking}\:\mathrm{for}\:\mathrm{definition}…