Question Number 69111 by Fawole last updated on 20/Sep/19 Commented by Rasheed.Sindhi last updated on 20/Sep/19 $$\left(\mathrm{2},\mathrm{11}\right),\left(\mathrm{11},\mathrm{2}\right),\left(\mathrm{5},\mathrm{10}\right)\:\&\:\left(\mathrm{10},\mathrm{5}\right). \\ $$ Commented by Fawole last updated on…
Question Number 134647 by SOMEDAVONG last updated on 06/Mar/21 $$\int\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}}\mathrm{dx}=?? \\ $$ Answered by benjo_mathlover last updated on 06/Mar/21 $$\mathrm{I}=\int\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}\right)^{\mathrm{3}/\mathrm{2}} \:\mathrm{dx} \\…
Question Number 134641 by benjo_mathlover last updated on 06/Mar/21 $$\mathscr{B}\:=\:\int\:\frac{\mathrm{1}−\mathrm{sin}\:\mathrm{6}{x}}{\mathrm{1}+\mathrm{sin}\:\mathrm{6}{x}}\:{dx}\: \\ $$ Answered by Dwaipayan Shikari last updated on 06/Mar/21 $$\int\frac{\mathrm{2}}{\mathrm{1}+{sin}\mathrm{6}{x}}−\mathrm{1}{dx}\:\:\:\:\:\:\:\mathrm{6}{x}={u} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\mathrm{1}}{\mathrm{1}+{sinu}}{du}−{x}\:\: \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\int\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}}…
Question Number 69106 by Tanmay chaudhury last updated on 20/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 69104 by Tanmay chaudhury last updated on 20/Sep/19 Commented by Tanmay chaudhury last updated on 20/Sep/19 Commented by Tanmay chaudhury last updated on…
Question Number 69105 by Tanmay chaudhury last updated on 20/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 134637 by bobhans last updated on 06/Mar/21 $$\mathcal{G}\mathrm{eometry} \\ $$How can you compute the length of the sides of a triangle given the…
Question Number 134636 by bobhans last updated on 06/Mar/21 $$\mathcal{INTEGRAL} \\ $$$$\left(\mathrm{1}\right)\int_{\mathrm{0}} ^{\:\mathrm{ln}\:\mathrm{2}} \:{x}^{−\mathrm{2}} .{e}^{−\frac{\mathrm{1}}{{x}}} \:{dx}\:=? \\ $$$$\left(\mathrm{2}\right)\:\int\:\frac{\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}{\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}}\:\mathrm{dx}\:=? \\ $$ Answered by benjo_mathlover…
Question Number 3566 by Yozzii last updated on 15/Dec/15 $${Let}\:{A}=\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix}.\:{Find}\:{a}\:{condition}\:{on} \\ $$$${a},{b},{c},{d}\:{so}\:{that}\:{A}^{{n}+\mathrm{1}} −{A}^{{n}} ={nA},\:{n}\in\mathbb{N}. \\ $$$$ \\ $$$${A}^{{n}+\mathrm{1}} −{A}^{{n}} ={nA} \\ $$$${A}^{{n}} −{A}^{{n}−\mathrm{1}} =\left({n}−\mathrm{1}\right){A} \\…
Question Number 3565 by Yozzii last updated on 15/Dec/15 $${Define}\:{the}\:{sequence}\:\left\{{a}_{{n}} \right\}\:{by}\:{the} \\ $$$${recurrence}\:{equation}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}_{{n}+\mathrm{1}} ={pa}_{{n}} +{qa}_{{n}−\mathrm{1}} \:\:\left({n}\geqslant\mathrm{1}\right) \\ $$$${where}\:{p},{q}\in\mathbb{C}−\left\{\mathrm{0}\right\}\:{and}\: \\ $$$${a}_{\mathrm{0}} =\alpha\:,\:{a}_{\mathrm{1}} =\beta\:\: \\…