Menu Close

Author: Tinku Tara

A-car-starts-from-rest-and-uniformly-accelerates-for-1-km-travels-with-uniform-velocity-for-98-km-and-brakes-and-stop-after-travelling-another-1-km-Consider-the-above-experiment-being-done-on-2-diff

Question Number 3463 by prakash jain last updated on 13/Dec/15 $$\mathrm{A}\:\mathrm{car}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{and}\:\mathrm{uniformly} \\ $$$$\mathrm{accelerates}\:\mathrm{for}\:\mathrm{1}\:\mathrm{km},\:\mathrm{travels}\:\mathrm{with}\:\mathrm{uniform} \\ $$$$\mathrm{velocity}\:\mathrm{for}\:\mathrm{98}\:\mathrm{km}\:\mathrm{and}\:\mathrm{brakes}\:\mathrm{and}\:\mathrm{stop} \\ $$$$\mathrm{after}\:\mathrm{travelling}\:\mathrm{another}\:\mathrm{1}\:\mathrm{km}. \\ $$$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{above}\:\mathrm{experiment}\:\mathrm{being}\:\mathrm{done} \\ $$$$\mathrm{on}\:\mathrm{2}\:\mathrm{different}\:\mathrm{roads}\:\mathrm{1st}\:\mathrm{roads}\:\mathrm{has}\:\mathrm{higher} \\ $$$$\mathrm{coefficient}\:\mathrm{of}\:\mathrm{friction}\:\mathrm{for}\:\mathrm{car}\:\mathrm{for}\:\mathrm{all}\:\mathrm{types} \\ $$$$\mathrm{than}\:\mathrm{2nd}\:\mathrm{road}.…

If-n-1-a-n-is-convergent-and-n-1-b-n-is-convergent-What-are-the-sufficient-condition-so-that-n-1-a-n-n-b-n-1-n-converges-a-n-b-n-gt-0-

Question Number 3460 by prakash jain last updated on 14/Dec/15 $$\mathrm{If}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{n}} \:\mathrm{is}\:\mathrm{convergent}\:\mathrm{and}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{b}_{{n}} \:\mathrm{is}\:\mathrm{convergent}. \\ $$$$\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{sufficient}\:\mathrm{condition}\:\mathrm{so}\:\mathrm{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{n}} ^{{n}} {b}_{{n}}…

The-speed-of-a-train-is-reduced-from-80km-hr-to-40km-hr-in-a-distance-of-500m-on-applying-the-brakes-i-How-much-further-will-the-train-travels-before-coming-to-rest-ii-Assuming-the-retar

Question Number 134530 by I want to learn more last updated on 04/Mar/21 $$\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{a}\:\mathrm{train}\:\mathrm{is}\:\mathrm{reduced}\:\mathrm{from}\:\:\mathrm{80km}/\mathrm{hr}\:\:\mathrm{to}\:\:\mathrm{40km}/\mathrm{hr}\:\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{distance}\:\mathrm{of}\:\:\mathrm{500m}\:\:\mathrm{on}\:\mathrm{applying}\:\mathrm{the}\:\mathrm{brakes}. \\ $$$$\left(\mathrm{i}\right)\:\:\mathrm{How}\:\mathrm{much}\:\mathrm{further}\:\mathrm{will}\:\mathrm{the}\:\mathrm{train}\:\mathrm{travels}\:\mathrm{before}\:\mathrm{coming}\:\mathrm{to}\:\mathrm{rest}. \\ $$$$\left(\mathrm{ii}\right)\:\:\mathrm{Assuming}\:\mathrm{the}\:\mathrm{retardation}\:\mathrm{remains}\:\mathrm{constant},\:\mathrm{how}\:\mathrm{long}\:\mathrm{will}\:\mathrm{it} \\ $$$$\mathrm{take}\:\mathrm{to}\:\mathrm{bring}\:\mathrm{the}\:\mathrm{train}\:\mathrm{to}\:\mathrm{rest}\:\mathrm{after}\:\mathrm{the}\:\mathrm{application}\:\mathrm{of}\:\mathrm{the}\:\mathrm{brakes}? \\ $$ Answered…

if-the-range-of-f-x-y-sec-1-x-1-x-sec-1-y-1-y-xy-lt-0-is-a-b-and-a-b-equals-pi-10-then-is-eqal-to-

Question Number 68991 by pranay02 last updated on 17/Sep/19 $${if}\:{the}\:{range}\:{of}\:{f}\left({x},\:{y}\right)\:=\:{sec}^{−\mathrm{1}} \left({x}+\frac{\mathrm{1}}{{x}}\right)+{sec}^{−\mathrm{1}} \left({y}+\frac{\mathrm{1}}{{y}}\right),\:{xy}<\mathrm{0}\:{is}\:\left({a},\:{b}\right)\:{and}\:\left({a}+{b}\right)\:{equals}\:\frac{\lambda\pi}{\mathrm{10}},\:{then}\:\lambda\:{is}\:{eqal}\:{to}\: \\ $$ Answered by MJS last updated on 18/Sep/19 $${g}\left({t}\right)=\mathrm{sec}^{−\mathrm{1}} \:\left({t}+\frac{\mathrm{1}}{{t}}\right)\:=\mathrm{cos}^{−\mathrm{1}} \:\left(\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{1}}\right)…

Question-134526

Question Number 134526 by mohammad17 last updated on 04/Mar/21 Answered by mr W last updated on 05/Mar/21 $$\frac{\mathrm{1}}{\mathrm{1}+{x}}=\mathrm{1}−{x}+{x}^{\mathrm{2}} −{x}^{\mathrm{3}} +… \\ $$$$\int\frac{\mathrm{1}}{\mathrm{1}+{x}}{dx}=\int\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} −{x}^{\mathrm{3}} +…\right){dx} \\…

Consider-a-polynomial-equation-i-0-n-a-i-x-i-0-a-i-Z-Prove-that-if-a-b-c-is-a-root-of-the-above-equation-then-a-b-c-is-also-a-root-a-b-c-Z-c-is-not-a-whole-square-

Question Number 3451 by prakash jain last updated on 13/Dec/15 $$\mathrm{Consider}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{equation} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} {x}^{{i}} =\mathrm{0},\:{a}_{{i}} \in\mathbb{Z} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:{a}+{b}\sqrt{{c}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{above} \\ $$$$\mathrm{equation}\:\mathrm{then}\:{a}−{b}\sqrt{{c}}\:\mathrm{is}\:\mathrm{also}\:\mathrm{a}\:\mathrm{root}. \\ $$$${a},{b},{c}\in\mathbb{Z},\:{c}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{whole}\:\mathrm{square}. \\…

let-a-b-be-any-two-elements-in-group-G-such-that-a-4-b-2-and-a-3-b-ab-find-ab-help-me-sir-please-

Question Number 134523 by mohammad17 last updated on 04/Mar/21 $${let}\:{a},{b}\:{be}\:{any}\:{two}\:{elements}\:{in}\:{group}\:{G} \\ $$$${such}\:{that}\:\mid{a}\mid=\mathrm{4}\:,\mid{b}\mid=\mathrm{2}\:{and}\:{a}^{\mathrm{3}} {b}={ab} \\ $$$${find}\:\mid{ab}\mid\:? \\ $$$${help}\:{me}\:{sir}\:{please} \\ $$ Commented by kaivan.ahmadi last updated on…