Menu Close

Author: Tinku Tara

For-any-number-x-gt-1-x-Z-x-can-be-expressed-as-a-combination-of-numbers-multiplied-together-e-g-10-5-2-20-5-4-5-2-2-100-10-10-5-2-5-2-x-p-1-e-1-p-2-e-2-p-n-e-n-where-p-n-i

Question Number 7289 by FilupSmith last updated on 21/Aug/16 $$\mathrm{For}\:\mathrm{any}\:\mathrm{number}\:{x}>\mathrm{1}:{x}\in\mathbb{Z} \\ $$$${x}\:\mathrm{can}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{as}\:\mathrm{a}\:\mathrm{combination} \\ $$$$\mathrm{of}\:\mathrm{numbers}\:\mathrm{multiplied}\:\mathrm{together}. \\ $$$$\mathrm{e}.\mathrm{g}. \\ $$$$\mathrm{10}=\mathrm{5}×\mathrm{2} \\ $$$$\mathrm{20}=\mathrm{5}×\mathrm{4}=\mathrm{5}×\mathrm{2}×\mathrm{2} \\ $$$$\mathrm{100}=\mathrm{10}×\mathrm{10}=\mathrm{5}×\mathrm{2}×\mathrm{5}×\mathrm{2} \\ $$$$\: \\…

What-is-derivative-for-this-function-a-b-x-1-c-1-2-x-1-x-2-d-1-6-x-1-x-2-x-3-

Question Number 72823 by Raxreedoroid last updated on 03/Nov/19 $$\mathrm{What}\:\mathrm{is}\:\mathrm{derivative}\:\mathrm{for}\:\mathrm{this}\:\mathrm{function} \\ $$$$\: \\ $$$${a}×{b}^{{x}−\mathrm{1}} ×{c}^{\frac{\mathrm{1}}{\mathrm{2}}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)} ×{d}^{\frac{\mathrm{1}}{\mathrm{6}}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)} \\ $$ Answered by mind is power last updated…

2-8-2-8-

Question Number 138350 by abenarhodym last updated on 12/Apr/21 $$\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{8}}−\frac{\mathrm{2}}{\:\sqrt{\mathrm{8}}}\right) \\ $$ Answered by Ñï= last updated on 12/Apr/21 $$\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{8}}−\frac{\mathrm{2}}{\:\sqrt{\mathrm{8}}}\right)=\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{2}^{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{2}}} \right)=\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{2}^{\mathrm{2}}…

show-that-lim-x-0-x-does-not-exist-Hence-define-x-and-sketch-a-graph-for-y-3x-2-x-

Question Number 72806 by Rio Michael last updated on 03/Nov/19 $$\underset{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\rightarrow\mathrm{0}} {\:{show}\:{that}\:\:\mathrm{lim}}\:\left[\:{x}\right]\:\:{does}\:{not}\:{exist}. \\ $$$${Hence}\:{define}\:\:\left[{x}\right]\:\:{and}\:{sketch}\:{a}\:{graph}\:{for}\: \\ $$$$\:{y}\:=\:\mathrm{3}{x}^{\mathrm{2}} \:+\:\left[{x}\right] \\ $$ Commented by mathmax by abdo last…