Menu Close

Author: Tinku Tara

if-y-f-x-how-do-you-write-the-function-in-the-reverse-Is-it-x-g-y-Or-is-there-a-better-way-

Question Number 3340 by Filup last updated on 11/Dec/15 $$\mathrm{if}\:\:{y}={f}\left({x}\right) \\ $$$$\mathrm{how}\:\mathrm{do}\:\mathrm{you}\:\mathrm{write}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{reverse}? \\ $$$$ \\ $$$$\mathrm{Is}\:\mathrm{it}\:{x}={g}\left({y}\right)? \\ $$$$\mathrm{Or}\:\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{better}\:\mathrm{way}? \\ $$ Answered by prakash…

Question-3337

Question Number 3337 by Yozzi last updated on 11/Dec/15 $$\:\: \\ $$$$\:\:\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\:\:\:\:\:\:\:\:\:\:\:\ast\:\:\:\ast\:\:\:\ast \\ $$$$\:\:\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast \\ $$$$\:\:\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast \\ $$$$\:\:\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\ast \\ $$$$\:\:\:\:\:\ast\:\:\:\ast\:\:\:\ast\:\:\:\:\:\:\:\:\:\:\:\:\:\:\ast\:\:\:\ast\:\:\:\ast \\ $$$$\:\:\:\:\:\dashleftarrow\dashleftarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\dashleftarrow\dashleftarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{h}_{\mathrm{1}} \:\:\:\:\:\:\:\:\:{h}_{\mathrm{2}}…

let-f-x-e-arctan-2-x-2-1-1-calculate-f-x-2-give-the-equation-of-tangente-to-graph-C-f-at-point-A-1-f-1-

Question Number 68871 by mathmax by abdo last updated on 16/Sep/19 $${let}\:{f}\left({x}\right)={e}^{−{arctan}\left(\frac{\mathrm{2}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\right)} \:\: \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){give}\:{the}\:{equation}\:{of}\:{tangente}\:{to}\:{graph}\:{C}_{{f}} {at}\:{point}\:{A}\left(\mathrm{1},{f}\left(\mathrm{1}\right)\right) \\ $$ Terms of Service…

let-f-a-0-pi-2-dx-a-sinx-a-real-1-find-a-explicit-form-for-f-a-2-calculste-also-g-a-0-pi-2-dx-a-sinx-2-and-h-a-0-pi-2-dx-a-sinx-3-3-give-f-n-a-at

Question Number 68869 by mathmax by abdo last updated on 16/Sep/19 $${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{{a}+{sinx}}\:\:\:\:\:\left({a}\:{real}\right) \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:\:{for}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculste}\:{also}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\left({a}+{sinx}\right)^{\mathrm{2}} }\:\:{and}\:{h}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\left({a}+{sinx}\right)^{\mathrm{3}} } \\…