Menu Close

Author: Tinku Tara

Question-68714

Question Number 68714 by Learner-123 last updated on 15/Sep/19 Answered by mr W last updated on 15/Sep/19 $${acceleration}\:{of}\:{object}\:{C}=\frac{\mathrm{1}.\mathrm{2}}{\mathrm{2}}=\mathrm{0}.\mathrm{6}{m}/{s}^{\mathrm{2}} \\ $$$${force}\:{in}\:{cable}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{375}×\frac{\mathrm{10}+\mathrm{0}.\mathrm{6}}{\mathrm{10}}=\mathrm{198}.\mathrm{75}\:{N} \\ $$$${power}\:{input}=\frac{\mathrm{198}.\mathrm{75}×\mathrm{0}.\mathrm{6}}{\mathrm{0}.\mathrm{85}}=\mathrm{140}.\mathrm{3}\:{watt} \\ $$ Commented…

given-that-x-and-y-are-two-numbers-other-one-given-that-a-gt-0-and-b-gt-0-and-a-x-b-y-ab-xy-show-that-x-y-0-

Question Number 68712 by Rio Michael last updated on 15/Sep/19 $${given}\:{that}\:{x}\:{and}\:{y}\:{are}\:{two}\:{numbers}\:{other}\:{one}.\: \\ $$$${given}\:{that}\:\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$$${and}\:\:{a}^{{x}} \:=\:{b}^{{y}} \:=\:\left({ab}\right)^{{xy}} \:\:{show}\:{that}\:\:{x}\:+\:{y}\:=\mathrm{0} \\ $$ Commented by Prithwish sen last…

Question-68710

Question Number 68710 by peter frank last updated on 15/Sep/19 Commented by Prithwish sen last updated on 15/Sep/19 $$\mathrm{x}+\mathrm{y}=\mathrm{0}…….\left(\mathrm{i}\right) \\ $$$$\mathrm{x}−\mathrm{y}=−\mathrm{4}……\left(\mathrm{ii}\right) \\ $$$$\mathrm{solving}\:\mathrm{x}=−\mathrm{2},\mathrm{y}=\mathrm{2} \\ $$$$\therefore\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{center}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{circle}}\:\boldsymbol{\mathrm{is}}\:\left(−\mathrm{2},\mathrm{2}\right)…

How-many-different-clock-type-dials-can-be-made-containing-first-n-natual-numbers-with-the-property-that-sum-of-any-two-numbers-of-consecutive-positions-be-a-prime-number-N-1-2-3-

Question Number 3172 by Rasheed Soomro last updated on 07/Dec/15 $$\mathcal{H}{ow}\:{many}\:{different}\:\:{clock}−{type}\:{dials}\:{can}\:{be}\:{made}\: \\ $$$${containing}\:{first}\:{n}\:{natual}\:{numbers}\:{with}\:{the}\:{property} \\ $$$${that}\:{sum}\:{of}\:\:{any}\:{two}\:{numbers}\:{of}\:{consecutive}\:{positions}\:{be} \\ $$$${a}\:{prime}\:{number}. \\ $$$$\mathbb{N}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},…\right\} \\ $$ Commented by Rasheed Soomro…

d-dx-ln-x-2-1-x-2-1-

Question Number 68703 by Maclaurin Stickker last updated on 15/Sep/19 $$\frac{{d}}{{dx}}\left({ln}\left(\sqrt{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}}\right)\right)=? \\ $$ Commented by MJS last updated on 15/Sep/19 $$\frac{{d}}{{dx}}\left[\mathrm{ln}\:\sqrt{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}}\right]=\frac{\mathrm{1}}{\mathrm{2}}×\frac{{d}}{{dx}}\left[\mathrm{ln}\:\frac{{x}^{\mathrm{2}}…

can-i-ask-for-some-help-how-to-prove-this-1-2-lt-0-1-2-dx-1-x-3-lt-pi-6-

Question Number 134239 by ruwedkabeh last updated on 01/Mar/21 $${can}\:{i}\:{ask}\:{for}\:{some}\:{help}? \\ $$$${how}\:{to}\:{prove}\:{this}? \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}<\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}<\frac{\pi}{\mathrm{6}} \\ $$ Commented by Dwaipayan Shikari last updated…