Menu Close

Author: Tinku Tara

ln-x-4-dx-

Question Number 68699 by Rio Michael last updated on 15/Sep/19 $$\int\:{ln}\left({x}\:+\:\mathrm{4}\right)\:{dx}\:= \\ $$ Commented by mathmax by abdo last updated on 15/Sep/19 $${let}\:{I}\:=\int{ln}\left({x}+\mathrm{4}\right){dx}\:\:{changement}\:{x}+\mathrm{4}={t}\:{give} \\ $$$${I}\:=\int{lnt}\:{dt}\:={tln}\left({t}\right)−{t}\:+{c}\:=\left({x}+\mathrm{4}\right){ln}\left({x}+\mathrm{4}\right)−{x}−\mathrm{4}\:+{c}…

Question-68693

Question Number 68693 by Maclaurin Stickker last updated on 15/Sep/19 Commented by turbo msup by abdo last updated on 15/Sep/19 $${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \left(\frac{\mathrm{1}}{\:\sqrt{{k}}}−\frac{\mathrm{1}}{\:\sqrt{{k}+\mathrm{1}}}\right)\:\Rightarrow \\…

I-struck-upon-this-n-0-16-n-1-15-0-pi-cos-4-x-sin-x-dx-1-5-cos-5-x-0-pi-0-4-in-another-way-I-cos-4-x-sin-x-dx-I-cos-4-x-cos-x-4cos-3-x-sin-x-cos-x-dx-I

Question Number 134227 by Raxreedoroid last updated on 01/Mar/21 $$\mathrm{I}\:\:\mathrm{struck}\:\mathrm{upon}\:\mathrm{this} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{16}^{{n}} =\frac{−\mathrm{1}}{\mathrm{15}} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \mathrm{cos}^{\mathrm{4}} \:{x}\:\mathrm{sin}\:{x}\:{dx}=\frac{−\mathrm{1}}{\mathrm{5}}\left[\mathrm{cos}^{\mathrm{5}} \:{x}\right]_{\mathrm{0}} ^{\pi} =\mathrm{0}.\mathrm{4} \\ $$$$\mathrm{in}\:\mathrm{another}\:\mathrm{way}…