Menu Close

Author: Tinku Tara

Change-the-order-of-numbers-on-a-clock-dial-so-that-sum-of-any-two-numbers-of-consecutive-positions-may-be-prime-

Question Number 3146 by Rasheed Soomro last updated on 06/Dec/15 $$\mathcal{C}{hange}\:{the}\:{order}\:{of}\:{numbers}\:{on}\:{a}\:{clock}−{dial}\:{so}\:{that}\: \\ $$$${sum}\:{of}\:{any}\:{two}\:{numbers}\:\:{of}\:{consecutive}\:{positions}\:{may} \\ $$$${be}\:{prime}. \\ $$ Answered by prakash jain last updated on 06/Dec/15…

Suggest-minimum-number-of-weights-by-which-we-can-weigh-upto-40-kgs-in-whole-numbers-in-a-traditional-balance-If-possible-mention-the-process-also-

Question Number 3143 by Rasheed Soomro last updated on 06/Dec/15 $$\mathcal{S}{uggest}\:{minimum}\:{number}\:{of}\:{weights}\:{by}\:{which}\:{we}\:\:{can}\: \\ $$$${weigh}\:\:{upto}\:\mathrm{40}\:{kgs}\left({in}\:{whole}\:{numbers}\right)\:{in}\:{a}\:{traditional}\:{balance}. \\ $$$${If}\:{possible}\:{mention}\:{the}\:{process}\:{also}. \\ $$ Commented by Rasheed Soomro last updated on 06/Dec/15…

Solve-the-equation-tanh-1-x-2-x-1-ln-2-show-that-the-set-1-2-4-8-under-15-multiplication-mod-15-forms-a-group-

Question Number 68676 by Rio Michael last updated on 14/Sep/19 $${Solve}\:{the}\:{equation} \\ $$$${tanh}^{−\mathrm{1}} \left(\frac{{x}−\mathrm{2}}{{x}+\mathrm{1}}\right)\:=\:{ln}\:\mathrm{2} \\ $$$${show}\:{that}\:{the}\:{set}\:\left\{\mathrm{1},\mathrm{2},\mathrm{4},\mathrm{8}\right\}\:\:{under}\:×_{\mathrm{15}} \:,{multiplication}\:{mod}\:\mathrm{15}\:\:{forms}\:{a}\:{group}. \\ $$ Commented by MJS last updated on…

Determine-if-the-series-n-1-a-n-by-the-formula-converges-or-diverges-a-1-7-a-n-1-9n-3sin-n-4n-5cos-n-a-n-a-converges-b-diverges-

Question Number 134208 by liberty last updated on 01/Mar/21 $$\mathrm{Determine}\:\mathrm{if}\:\mathrm{the}\:\mathrm{series}\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{a}_{\mathrm{n}} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{formula}\:\mathrm{converges}\:\mathrm{or}\: \\ $$$$\mathrm{diverges}\:.\:\mathrm{a}_{\mathrm{1}} =\:\mathrm{7},\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:=\:\frac{\mathrm{9n}+\mathrm{3sin}\:\mathrm{n}}{\mathrm{4n}+\mathrm{5cos}\:\mathrm{n}}.\mathrm{a}_{\mathrm{n}} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{converges} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{diverges} \\ $$$$ \\…

Express-in-partial-fraction-f-x-2x-3-x-2-x-2-1-x-1-x-2-x-1-2-Hence-or-otherwise-show-that-0

Question Number 68675 by Rio Michael last updated on 14/Sep/19 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:{Express}\:{in}\:{partial}\:{fraction}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:{f}\left({x}\right)\:\equiv\:\frac{\mathrm{2}{x}^{\mathrm{3}} \:+\:{x}\:+\:\mathrm{2}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}+\mathrm{1}\right)\left({x}−\mathrm{2}\right)}\:{x}\:\neq\:−\mathrm{1},\mathrm{2} \\ $$$${Hence}\:{or}\:{otherwise}\:\:{show}\:{that}\:\: \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right)\:{dx}\:=\:−\frac{\mathrm{1}}{\mathrm{12}}\left[\:\mathrm{13}{ln}\:\mathrm{2}\:+\:\pi\right] \\ $$$$…

Question-134211

Question Number 134211 by rs4089 last updated on 01/Mar/21 Answered by mr W last updated on 01/Mar/21 $${u}={x}^{{m}} {y}^{{n}} \left({a}−{x}−{y}\right)^{{p}} \\ $$$$\frac{\partial{u}}{\partial{x}}={y}^{{n}} \left[{mx}^{{m}−\mathrm{1}} \left({a}−{x}−{y}\right)^{{p}} −{x}^{{m}}…