Menu Close

Author: Tinku Tara

Find-the-number-of-integers-satisfying-x-5-21-x-2-10x-4-

Question Number 134169 by liberty last updated on 28/Feb/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integers} \\ $$$$\mathrm{satisfying}\:\mid\mid\mathrm{x}−\mathrm{5}\mid−\mathrm{21}\mid\:=\:\mid\:\mathrm{x}^{\mathrm{2}} −\mathrm{10x}+\mathrm{4}\:\mid \\ $$ Answered by mr W last updated on 28/Feb/21 $$\mid\mid{x}−\mathrm{5}\mid−\mathrm{21}\mid=\mid\mid{x}−\mathrm{5}\mid^{\mathrm{2}} −\mathrm{21}\mid…

lim-x-0-1-sin-x-cos-x-1-sin-px-cos-px-

Question Number 134171 by liberty last updated on 28/Feb/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}+\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}{\mathrm{1}+\mathrm{sin}\:\left(\mathrm{px}\right)−\mathrm{cos}\:\left(\mathrm{px}\right)}\:=? \\ $$ Answered by malwan last updated on 28/Feb/21 $$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\mathrm{1}+\left({x}−…\right)−\left(\mathrm{1}−…\right)}{\mathrm{1}+\left({px}−…\right)−\left(\mathrm{1}−…\right)}\:\:=\:\frac{\mathrm{1}}{{p}} \\ $$ Answered…

Solve-1-cos-x-1-cos-x-2sin-x-

Question Number 134165 by liberty last updated on 28/Feb/21 $$\mathrm{Solve}\:\sqrt{\mathrm{1}+\mathrm{cos}\:\mathrm{x}}\:+\:\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}\:=\:\mathrm{2sin}\:\mathrm{x} \\ $$ Answered by EDWIN88 last updated on 28/Feb/21 $$\mathrm{square}\:\mathrm{both}\:\mathrm{sides} \\ $$$$\Leftrightarrow\:\mathrm{2}+\mathrm{2}\sqrt{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:=\:\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x} \\…

Question-68629

Question Number 68629 by TawaTawa last updated on 14/Sep/19 Answered by $@ty@m123 last updated on 14/Sep/19 $$\angle{XYT}=\angle{XTP} \\ $$$$\Rightarrow\angle{XYT}=\mathrm{50}^{\mathrm{o}} \\ $$$$\mathrm{L}{et}\:\angle{YXT}=\angle{XTY}={x} \\ $$$$\Rightarrow{x}+{x}+\mathrm{50}^{\mathrm{o}} =\mathrm{180}^{\mathrm{o}} \\…

Question-68624

Question Number 68624 by TawaTawa last updated on 14/Sep/19 Answered by Rasheed.Sindhi last updated on 14/Sep/19 $$\mathbb{A}\:\mathbb{T}\boldsymbol{\mathrm{ricky}}\:\mathbb{A}\boldsymbol{\mathrm{pproach}} \\ $$$$\mathrm{k}=−\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} −\mathrm{a}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{2}} −\mathrm{b}+\mathrm{1}}\right)+\mathrm{c} \\ $$$$\:\:=−\mathrm{3}\left(\frac{\mathrm{a}+\mathrm{1}}{\left(\mathrm{a}+\mathrm{1}\right)\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}+\mathrm{1}\right)}+\frac{\mathrm{b}+\mathrm{1}}{\left(\mathrm{b}+\mathrm{1}\right)\left(\mathrm{b}^{\mathrm{2}} −\mathrm{b}+\mathrm{1}\right)}\right)+\mathrm{c}…

solve-for-x-the-following-equations-a-log-x-3-2log-x-2-2log-x-2log-x-3-b-log-x-24-3log-x-4-2log-x-3-3-

Question Number 68618 by Rio Michael last updated on 14/Sep/19 $${solve}\:{for}\:{x}\:{the}\:{following}\:{equations} \\ $$$$\left.{a}\right)\:{log}\:{x}^{\mathrm{3}} \:−\:\mathrm{2}{log}\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{log}\:{x}\:\:+\:\mathrm{2}{log}\:\sqrt{{x}}\:=\:\mathrm{3} \\ $$$$\left.{b}\right)\:{log}_{{x}} \mathrm{24}\:−\mathrm{3}{log}_{{x}} \mathrm{4}\:\:+\:\mathrm{2}{log}_{{x}} \mathrm{3}\:=−\mathrm{3} \\ $$ Answered by Rasheed.Sindhi…