Menu Close

Author: Tinku Tara

J-dx-1-tan-x-csc-x-cot-x-sec-x-

Question Number 134058 by john_santu last updated on 27/Feb/21 $$\mathcal{J}\:=\:\int\:\frac{{dx}}{\mathrm{1}+\mathrm{tan}\:{x}+\mathrm{csc}\:{x}+\mathrm{cot}\:{x}+\mathrm{sec}\:{x}} \\ $$ Answered by john_santu last updated on 27/Feb/21 $$\mathcal{J}=\int\:\frac{{dx}}{\mathrm{1}+\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}+\frac{\mathrm{1}}{\mathrm{sin}\:{x}}+\frac{\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}+\frac{\mathrm{1}}{\mathrm{cos}\:{x}}} \\ $$$$\:=\:\int\:\frac{\mathrm{cos}\:{x}\:\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}\mathrm{cos}\:{x}+\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{cos}\:^{\mathrm{2}} {x}+\mathrm{sin}\:{x}} \\…

2-m-f-x-dx-lim-n-k-1-n-1-k-n-2k-n-m-f-m-

Question Number 2983 by Syaka last updated on 02/Dec/15 $$\underset{\mathrm{2}} {\overset{{m}} {\int}}\:{f}\left({x}\right)\:{dx}\:=\:\underset{{n}\:\rightarrow\:\infty} {{lim}}\:\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\:\left(\mathrm{1}\:+\frac{{k}}{{n}}\right)\left(\frac{\mathrm{2}{k}}{{n}}\right) \\ $$$$ \\ $$$${m}\:+\:{f}\left({m}\right)\:=\:? \\ $$ Commented by prakash jain…

Question-134052

Question Number 134052 by shaker last updated on 27/Feb/21 Answered by mathmax by abdo last updated on 27/Feb/21 $$\mathrm{I}\:=\int\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{6}} \:+\mathrm{3}}\mathrm{dx}\:\:\Rightarrow\mathrm{I}\:=\int\:\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{6}} \:+\left(\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{6}}} \right)^{\mathrm{6}} }\mathrm{dx}\:=_{\mathrm{x}=\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{6}}}…

Prove-that-d-dx-e-x-e-x-Assume-that-you-do-not-know-that-the-above-statement-is-true-

Question Number 2980 by Filup last updated on 02/Dec/15 $$\mathrm{Prove}\:\mathrm{that}\:\frac{{d}}{{dx}}\left({e}^{{x}} \right)={e}^{{x}} \\ $$$$\mathrm{Assume}\:\mathrm{that}\:\mathrm{you}\:\mathrm{do}\:\mathrm{not}\:\mathrm{know}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{above}\:\mathrm{statement}\:\mathrm{is}\:\mathrm{true}. \\ $$ Answered by RasheedAhmad last updated on 02/Dec/15 $${e}^{{x}}…

If-a-parabola-is-in-form-f-x-ax-2-bx-c-why-is-g-x-e-x-e-x-parabolic-Does-it-have-to-do-with-its-locus-

Question Number 2979 by Filup last updated on 02/Dec/15 $$\mathrm{If}\:\mathrm{a}\:\mathrm{parabola}\:\mathrm{is}\:\mathrm{in}\:\mathrm{form}\:{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c}, \\ $$$$\mathrm{why}\:\mathrm{is}\:{g}\left({x}\right)={e}^{{x}} +{e}^{−{x}} \:\:\mathrm{parabolic}? \\ $$$$ \\ $$$$\mathrm{Does}\:\mathrm{it}\:\mathrm{have}\:\mathrm{to}\:\mathrm{do}\:\mathrm{with}\:\mathrm{its}\:\mathrm{locus}? \\ $$ Commented by 123456 last…

Question-68515

Question Number 68515 by azizullah last updated on 12/Sep/19 Commented by Prithwish sen last updated on 13/Sep/19 $$\left[\mathrm{z}\left(\mathrm{z}−\mathrm{6}\right)\right]^{\mathrm{2}} =\left[\left(\mathrm{3}+\mathrm{2i}\right)\left(\mathrm{3}+\mathrm{2i}−\mathrm{6}\right)\right]^{\mathrm{2}} =\left[\left(\mathrm{2i}\right)^{\mathrm{2}} −\left(\mathrm{3}\right)^{\mathrm{2}} \right]^{\mathrm{2}} \\ $$$$=\left(−\mathrm{13}\right)^{\mathrm{2}} =\mathrm{169}…

Question-68510

Question Number 68510 by oyemi kemewari last updated on 12/Sep/19 Answered by mr W last updated on 14/Sep/19 $${v}=\sqrt{\mathrm{2}{gh}} \\ $$$${base}\:{area}\:{of}\:{tanks}={A}=\mathrm{1}\:{ft}^{\mathrm{2}} \\ $$$${A}\frac{{dh}}{\mathrm{2}}=−\frac{\pi{d}^{\mathrm{2}} }{\mathrm{4}}{vdt} \\…