Menu Close

Author: Tinku Tara

Find-the-shortest-distance-between-the-curve-y-2-x-1and-x-2-y-1-

Question Number 134040 by benjo_mathlover last updated on 27/Feb/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\: \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{curve}\: \\ $$$$\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{x}−\mathrm{1and}\:\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{y}−\mathrm{1} \\ $$ Commented by benjo_mathlover last updated on 27/Feb/21…

Question-134037

Question Number 134037 by benjo_mathlover last updated on 26/Feb/21 Answered by john_santu last updated on 27/Feb/21 $$\mathrm{49}^{\mathrm{303}} .\mathrm{3993}^{\mathrm{202}} .\mathrm{39}^{\mathrm{606}} \:= \\ $$$$\left(\mathrm{7}^{\mathrm{2}} \right)^{\mathrm{303}} .\:\mathrm{3}^{\mathrm{606}} .\mathrm{13}^{\mathrm{606}}…

Question-68503

Question Number 68503 by TawaTawa last updated on 12/Sep/19 Commented by Prithwish sen last updated on 12/Sep/19 $$\mathrm{2x}\frac{\pi\mathrm{6}^{\mathrm{2}} }{\mathrm{4}}\:−\mathrm{2}\left[\mathrm{36}\left(\frac{\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\right)\right]=\mathrm{18}\left[\sqrt{\mathrm{3}}−\frac{\pi}{\mathrm{3}}\right]\:\backsim\:\mathrm{12}.\mathrm{33} \\ $$$$\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}}. \\ $$ Commented by…