Question Number 68508 by oyemi kemewari last updated on 12/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 68509 by oyemi kemewari last updated on 12/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 68506 by oyemi kemewari last updated on 12/Sep/19 $${y}'=\mathrm{4}{y}^{\mathrm{2}} +{x}^{\mathrm{2}} +\mathrm{1} \\ $$$${what}\:{the}\:{primitive}\:{solution} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 134040 by benjo_mathlover last updated on 27/Feb/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\: \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{curve}\: \\ $$$$\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{x}−\mathrm{1and}\:\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{y}−\mathrm{1} \\ $$ Commented by benjo_mathlover last updated on 27/Feb/21…
Question Number 2970 by Syaka last updated on 01/Dec/15 $$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\underset{\mathrm{0}} {\overset{{z}} {\int}}\underset{\mathrm{0}} {\overset{{y}} {\int}}\:{sin}\:\left({x}\:+\:{y}\:+\:{z}\right)\:{dx}\:{dy}\:{dz}\:=\:…? \\ $$ Answered by Yozzi last updated on 02/Dec/15…
Question Number 2968 by Karting7442 last updated on 01/Dec/15 $${Powers}\:{of}\:{Monomials}\:\:\:\:\:\:\:{Alg}. \\ $$$$ \\ $$$$\left(\mathrm{0}.\mathrm{6}{p}^{\mathrm{5}} \right)^{\mathrm{3}} \\ $$ Answered by Filup last updated on 02/Dec/15 $$=\mathrm{0}.\mathrm{6}^{\mathrm{3}}…
Question Number 134037 by benjo_mathlover last updated on 26/Feb/21 Answered by john_santu last updated on 27/Feb/21 $$\mathrm{49}^{\mathrm{303}} .\mathrm{3993}^{\mathrm{202}} .\mathrm{39}^{\mathrm{606}} \:= \\ $$$$\left(\mathrm{7}^{\mathrm{2}} \right)^{\mathrm{303}} .\:\mathrm{3}^{\mathrm{606}} .\mathrm{13}^{\mathrm{606}}…
Question Number 2967 by Karting7442 last updated on 01/Dec/15 $${Powers}\:{of}\:{Monomials}\:\:\:\:\:\:{Alg}. \\ $$$$ \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{5}}{a}^{\mathrm{6}} {b}^{\mathrm{9}} \right)^{\mathrm{2}} \\ $$ Answered by Filup last updated on 02/Dec/15…
Question Number 134036 by mathocean1 last updated on 26/Feb/21 $${Is}\:{this}\:{proposition}\:{true}?: \\ $$$$ \\ $$$$\forall\:{x}\:\in\:\mathbb{Z},\:{x}^{\mathrm{2}} +{x}+\mathrm{3}\equiv\mathrm{0}\left[\mathrm{5}\right]\:{if}\:\:{and}\:{only}\:{if} \\ $$$$\:{x}\equiv\mathrm{1}\left[\mathrm{5}\right] \\ $$ Commented by mr W last updated…
Question Number 68503 by TawaTawa last updated on 12/Sep/19 Commented by Prithwish sen last updated on 12/Sep/19 $$\mathrm{2x}\frac{\pi\mathrm{6}^{\mathrm{2}} }{\mathrm{4}}\:−\mathrm{2}\left[\mathrm{36}\left(\frac{\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\right)\right]=\mathrm{18}\left[\sqrt{\mathrm{3}}−\frac{\pi}{\mathrm{3}}\right]\:\backsim\:\mathrm{12}.\mathrm{33} \\ $$$$\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}}. \\ $$ Commented by…