Menu Close

Author: Tinku Tara

Question-133980

Question Number 133980 by mohammad17 last updated on 26/Feb/21 Answered by mr W last updated on 26/Feb/21 $$\frac{\partial{p}}{\partial{x}}=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }} \\ $$$$\frac{\partial{p}}{\partial{y}}=\frac{{y}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}}…

sin-1-3-5-tan-1-1-7-

Question Number 133976 by liberty last updated on 26/Feb/21 $$\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{5}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{7}}\right)=? \\ $$ Answered by bemath last updated on 26/Feb/21 $$\mathrm{let}\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{5}}\right)=\vartheta\:\Rightarrow\begin{cases}{\mathrm{sin}\:\vartheta=\frac{\mathrm{3}}{\mathrm{5}}}\\{\mathrm{tan}\:\vartheta=\frac{\mathrm{3}}{\mathrm{4}}}\end{cases} \\ $$$$\Rightarrow\:\mathrm{sin}^{−\mathrm{1}}…

Given-f-x-x-x-2-1-27-1-3-x-x-2-1-27-1-3-g-x-x-3-x-1-Find-0-4-g-f-g-x-dx-

Question Number 133973 by liberty last updated on 26/Feb/21 $$\:\mathrm{Given}\:\begin{cases}{\mathrm{f}\left(\mathrm{x}\right)=\sqrt[{\mathrm{3}}]{\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{27}}}}+\sqrt[{\mathrm{3}}]{\mathrm{x}−\sqrt{\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{27}}}}}\\{\mathrm{g}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} +\mathrm{x}+\mathrm{1}}\end{cases} \\ $$$$\mathrm{Find}\:\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\:\left(\mathrm{g}\circ\mathrm{f}\circ\mathrm{g}\right)\left(\mathrm{x}\right)\:\mathrm{dx}\:. \\ $$ Answered by EDWIN88 last updated on…

H-2x-1-7-2x-1-9-dx-

Question Number 133972 by liberty last updated on 26/Feb/21 $$\mathscr{H}\:=\:\int\:\frac{\left(\mathrm{2x}−\mathrm{1}\right)^{\mathrm{7}} }{\left(\mathrm{2x}+\mathrm{1}\right)^{\mathrm{9}} }\:\mathrm{dx}\: \\ $$ Answered by EDWIN88 last updated on 26/Feb/21 $$\:\mathscr{H}\:=\:\int\:\left(\frac{\mathrm{2x}−\mathrm{1}}{\mathrm{2x}+\mathrm{1}}\right)^{\mathrm{7}} .\frac{\mathrm{dx}}{\left(\mathrm{2x}+\mathrm{1}\right)^{\mathrm{2}} } \\…

Question-68434

Question Number 68434 by mhmd last updated on 10/Sep/19 Answered by mind is power last updated on 10/Sep/19 $$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\int_{{a}} ^{{b}} {f}\left({a}+\mathrm{b}−\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{3sin}\left(\mathrm{x}\right)−\mathrm{2sin}^{\mathrm{2}}…

hello-i-search-som-lectur-about-hypergeometric-fonction2F-1-a-b-c-x-c-a-b-n-0-a-n-b-n-c-n-n-x-n-

Question Number 68433 by mind is power last updated on 10/Sep/19 $${hello} \\ $$$${i}\:{search}\:{som}\:{lectur}\:{about}\:{hypergeometric}\:{fonction}\mathrm{2}{F}_{\mathrm{1}} \left({a},{b},{c},{x}\right)=\frac{\Gamma\left({c}\right)}{\Gamma\left({a}\right)\Gamma\left({b}\right)}\sum_{{n}\geqslant\mathrm{0}} \frac{\Gamma\left({a}+{n}\right)\Gamma\left({b}+{n}\right)}{\Gamma\left({c}+{n}\right){n}!}{x}^{{n}} \\ $$$$ \\ $$ Terms of Service Privacy Policy…