Question Number 68446 by 9102176137086 last updated on 10/Sep/19 $$\mathrm{cos}\:\left({x}−\mathrm{60}\right)+\mathrm{cos}\:\left({x}−\mathrm{30}\right)=\mathrm{sin}\:{x} \\ $$$${prove} \\ $$ Commented by mr W last updated on 10/Sep/19 $${not}\:{true}! \\ $$$${for}\:{x}=\mathrm{30}°:…
Question Number 133980 by mohammad17 last updated on 26/Feb/21 Answered by mr W last updated on 26/Feb/21 $$\frac{\partial{p}}{\partial{x}}=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }} \\ $$$$\frac{\partial{p}}{\partial{y}}=\frac{{y}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}}…
Question Number 133976 by liberty last updated on 26/Feb/21 $$\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{5}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{7}}\right)=? \\ $$ Answered by bemath last updated on 26/Feb/21 $$\mathrm{let}\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{5}}\right)=\vartheta\:\Rightarrow\begin{cases}{\mathrm{sin}\:\vartheta=\frac{\mathrm{3}}{\mathrm{5}}}\\{\mathrm{tan}\:\vartheta=\frac{\mathrm{3}}{\mathrm{4}}}\end{cases} \\ $$$$\Rightarrow\:\mathrm{sin}^{−\mathrm{1}}…
Question Number 133979 by Ñï= last updated on 26/Feb/21 $$\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \frac{{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}}{\left({sin}^{\mathrm{3}} {x}+{cos}^{\mathrm{3}} {x}\right)^{\mathrm{3}} }{dx}=? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 133973 by liberty last updated on 26/Feb/21 $$\:\mathrm{Given}\:\begin{cases}{\mathrm{f}\left(\mathrm{x}\right)=\sqrt[{\mathrm{3}}]{\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{27}}}}+\sqrt[{\mathrm{3}}]{\mathrm{x}−\sqrt{\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{27}}}}}\\{\mathrm{g}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} +\mathrm{x}+\mathrm{1}}\end{cases} \\ $$$$\mathrm{Find}\:\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\:\left(\mathrm{g}\circ\mathrm{f}\circ\mathrm{g}\right)\left(\mathrm{x}\right)\:\mathrm{dx}\:. \\ $$ Answered by EDWIN88 last updated on…
Question Number 133972 by liberty last updated on 26/Feb/21 $$\mathscr{H}\:=\:\int\:\frac{\left(\mathrm{2x}−\mathrm{1}\right)^{\mathrm{7}} }{\left(\mathrm{2x}+\mathrm{1}\right)^{\mathrm{9}} }\:\mathrm{dx}\: \\ $$ Answered by EDWIN88 last updated on 26/Feb/21 $$\:\mathscr{H}\:=\:\int\:\left(\frac{\mathrm{2x}−\mathrm{1}}{\mathrm{2x}+\mathrm{1}}\right)^{\mathrm{7}} .\frac{\mathrm{dx}}{\left(\mathrm{2x}+\mathrm{1}\right)^{\mathrm{2}} } \\…
Question Number 68434 by mhmd last updated on 10/Sep/19 Answered by mind is power last updated on 10/Sep/19 $$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\int_{{a}} ^{{b}} {f}\left({a}+\mathrm{b}−\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{3sin}\left(\mathrm{x}\right)−\mathrm{2sin}^{\mathrm{2}}…
Question Number 133968 by help last updated on 26/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 68433 by mind is power last updated on 10/Sep/19 $${hello} \\ $$$${i}\:{search}\:{som}\:{lectur}\:{about}\:{hypergeometric}\:{fonction}\mathrm{2}{F}_{\mathrm{1}} \left({a},{b},{c},{x}\right)=\frac{\Gamma\left({c}\right)}{\Gamma\left({a}\right)\Gamma\left({b}\right)}\sum_{{n}\geqslant\mathrm{0}} \frac{\Gamma\left({a}+{n}\right)\Gamma\left({b}+{n}\right)}{\Gamma\left({c}+{n}\right){n}!}{x}^{{n}} \\ $$$$ \\ $$ Terms of Service Privacy Policy…
Question Number 133964 by mathocean1 last updated on 26/Feb/21 $${calculate}\: \\ $$$${I}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{1}+{e}^{{x}} }\:{dx} \\ $$ Answered by bobhans last updated on 26/Feb/21 $$\int\:\frac{\mathrm{e}^{\mathrm{x}}…