Menu Close

Author: Tinku Tara

lim-x-0-sin-x-x-2-

Question Number 133923 by bemath last updated on 25/Feb/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mid\mathrm{sin}\:\mathrm{x}\mid}{\mathrm{x}^{\mathrm{2}} }\:=? \\ $$ Answered by EDWIN88 last updated on 25/Feb/21 $$\:\mathrm{x}^{\mathrm{2}} \:=\:\mid\mathrm{x}\mid^{\mathrm{2}} \:\Rightarrow\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mid\mathrm{sin}\:\mathrm{x}\mid}{\mid\mathrm{x}\mid}\:.\frac{\mathrm{1}}{\mid\mathrm{x}\mid}=\:\underset{{x}\rightarrow\mathrm{0}}…

Question-133916

Question Number 133916 by shaker last updated on 25/Feb/21 Answered by TheSupreme last updated on 25/Feb/21 $${S}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{e}^{{kx}} +{e}^{−{kx}} }{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\left\{\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left({e}^{{x}} \right)^{{k}}…

While-you-are-in-between-the-project-I-am-trying-to-improve-my-digestiblity-to-digest-the-concept-of-analytical-continuation-First-we-make-aformula-to-sum-n-terms-of-a-powe-series-x-n-1-x-1-

Question Number 2845 by Rasheed Soomro last updated on 28/Nov/15 $$\mathcal{W}{hile}\:{you}\:{are}\:{in}\:{between}\:{the}\:{project} \\ $$$$\mathcal{I}\:{am}\:{trying}\:{to}\:{improve}\:{my}\:{digestiblity}\:{to} \\ $$$${digest}\:{the}\:{concept}\:{of}\:'{analytical}\:{continuation}'. \\ $$$$ \\ $$$${First}\:{we}\:{make}\:{aformula}\:{to}\:{sum}\:{n}\:{terms}\:{of}\:{a}\:{powe}\:{series}: \\ $$$$\frac{{x}^{{n}} −\mathrm{1}}{{x}−\mathrm{1}}=\mathrm{1}+{x}+{x}^{\mathrm{2}} +…+{x}^{{n}} \\ $$$${latter}\:{we}\:{change}\:{it}\:{for}\:\mid{x}\mid<\mathrm{1}\:{and}\:{n}\rightarrow\infty\:\left[{x}^{{n}}…

A-cos-x-sin-5x-sin-x-dx-

Question Number 133911 by liberty last updated on 25/Feb/21 $$\mathcal{A}=\int\:\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{5x}+\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$ Answered by Ar Brandon last updated on 25/Feb/21 $$\mathcal{A}=\int\frac{\mathrm{cosx}}{\mathrm{sin5x}+\mathrm{sinx}}\mathrm{dx}=\int\frac{\mathrm{cosx}}{\mathrm{2sin3xcos2x}}\mathrm{dx} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{cosx}\:\mathrm{dx}}{\left(\mathrm{3sinx}−\mathrm{4sin}^{\mathrm{3}} \mathrm{x}\right)\left(\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \mathrm{x}\right)}…

De-montrer-que-n-1-1-n-1-n-4-1-2-pi-2-sin-pi-2-cosh-pi-2-sinh-pi-2-cos-pi-2-sinh-2-pi-2-sin-2-pi-2-

Question Number 133910 by Ar Brandon last updated on 25/Feb/21 $$\:\:\:\:\mathcal{D}\acute {\mathrm{e}montrer}\:\mathrm{que}; \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{1}+\mathrm{n}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\pi}{\:\sqrt{\mathrm{2}}}\:\frac{\mathrm{sin}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)\mathrm{cosh}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+\mathrm{sinh}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)\mathrm{cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)}{\mathrm{sinh}^{\mathrm{2}} \left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+\mathrm{sin}^{\mathrm{2}} \left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)}\right] \\ $$ Terms of Service…

Question-133905

Question Number 133905 by mohammad17 last updated on 25/Feb/21 Answered by Dwaipayan Shikari last updated on 25/Feb/21 $$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}−\frac{{y}^{\mathrm{2}} }{\mathrm{4}}} {dxdy}…