Menu Close

Author: Tinku Tara

Question-68370

Question Number 68370 by mhmd last updated on 09/Sep/19 Answered by MJS last updated on 09/Sep/19 $$\int\frac{{dt}}{\:\sqrt{\mathrm{e}^{{t}} −\mathrm{1}}}= \\ $$$$\:\:\:\:\:\left[{u}=\sqrt{\mathrm{e}^{{t}} −\mathrm{1}}\:\rightarrow\:{dt}=\frac{\mathrm{2}\sqrt{\mathrm{e}^{{t}} −\mathrm{1}}}{\mathrm{e}^{{t}} }{du}\right] \\ $$$$=\mathrm{2}\int\frac{{du}}{{u}^{\mathrm{2}}…

1-x-1-y-lim-x-1-x-tan-1-2x-2-

Question Number 68368 by naka3546 last updated on 09/Sep/19 $$\frac{\mathrm{1}}{{x}+\mathrm{1}}\:=\:{y} \\ $$$$\underset{{x}+\mathrm{1}\:\rightarrow\:\infty} {\mathrm{lim}}\:\:{x}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right) \\ $$ Commented by kaivan.ahmadi last updated on 09/Sep/19 $${x}+\mathrm{1}\rightarrow\infty\Rightarrow{x}\rightarrow\infty \\ $$$${and}\:\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\rightarrow\mathrm{0}\Rightarrow{tan}\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right)\approx\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}…

Find-the-least-positive-integer-that-leaves-a-remainder-3-when-divided-by-7-4-when-divided-by-9-and-8-when-divided-by-11-

Question Number 133897 by bemath last updated on 25/Feb/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{positive}\:\mathrm{integer} \\ $$$$\mathrm{that}\:\mathrm{leaves}\:\mathrm{a}\:\mathrm{remainder}\:\mathrm{3}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{7} \\ $$$$,\:\mathrm{4}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{9}\:,\:\mathrm{and}\:\mathrm{8}\:\mathrm{when} \\ $$$$\mathrm{divided}\:\mathrm{by}\:\mathrm{11}. \\ $$ Answered by john_santu last updated on 25/Feb/21…

If-u-and-v-are-the-roots-of-equation-6x-2-6px-14p-2-0-where-u-v-non-integer-and-u-v-1-then-the-value-of-u-v-is-a-14-b-15-c-16-d-17-e-18-

Question Number 133892 by EDWIN88 last updated on 25/Feb/21 $$\mathrm{If}\:{u}\:\mathrm{and}\:{v}\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{equation}\: \\ $$$$\mathrm{6x}^{\mathrm{2}} −\mathrm{6px}\:+\mathrm{14p}−\mathrm{2}=\mathrm{0},\:\mathrm{where}\:{u}\:;\:{v}\:\mathrm{non}\:\mathrm{integer} \\ $$$$\mathrm{and}\:{u},\:{v}\:\geqslant\:\mathrm{1}\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mid{u}−{v}\mid\:\mathrm{is} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{14}\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{15}\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{16}\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{17}\:\:\:\:\left(\mathrm{e}\right)\:\mathrm{18} \\ $$ Terms of Service Privacy Policy Contact:…

We-have-the-idea-of-Phythagorian-triples-as-solutions-x-y-z-to-the-equation-x-2-y-2-z-2-where-x-y-z-Z-How-frequently-do-solutions-x-y-z-t-to-the-equation-

Question Number 2820 by Yozzis last updated on 27/Nov/15 $${We}\:{have}\:{the}\:{idea}\:{of}\:{Phythagorian}\:{triples} \\ $$$${as}\:{solutions}\:\left({x},{y},{z}\right)\:{to}\:{the}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={z}^{\mathrm{2}} \\ $$$${where}\:{x},{y},{z}\in\mathbb{Z}^{+} .\: \\ $$$${How}\:{frequently}\:{do}\:{solutions}\:\left({x},{y},{z},{t}\right)\:\:{to}\:{the}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}}…

lim-x-y-0-0-x-4-x-2-y-2-y-4-x-2-x-4-y-4-y-2-

Question Number 68354 by TawaTawa last updated on 09/Sep/19 $$\underset{{x},\mathrm{y}\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{4}} \:−\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{4}} }{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} \:+\:\mathrm{y}^{\mathrm{2}} } \\ $$ Commented by kaivan.ahmadi last…