Menu Close

Author: Tinku Tara

If-u-and-v-are-the-roots-of-equation-6x-2-6px-14p-2-0-where-u-v-non-integer-and-u-v-1-then-the-value-of-u-v-is-a-14-b-15-c-16-d-17-e-18-

Question Number 133892 by EDWIN88 last updated on 25/Feb/21 $$\mathrm{If}\:{u}\:\mathrm{and}\:{v}\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{equation}\: \\ $$$$\mathrm{6x}^{\mathrm{2}} −\mathrm{6px}\:+\mathrm{14p}−\mathrm{2}=\mathrm{0},\:\mathrm{where}\:{u}\:;\:{v}\:\mathrm{non}\:\mathrm{integer} \\ $$$$\mathrm{and}\:{u},\:{v}\:\geqslant\:\mathrm{1}\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mid{u}−{v}\mid\:\mathrm{is} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{14}\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{15}\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{16}\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{17}\:\:\:\:\left(\mathrm{e}\right)\:\mathrm{18} \\ $$ Terms of Service Privacy Policy Contact:…

We-have-the-idea-of-Phythagorian-triples-as-solutions-x-y-z-to-the-equation-x-2-y-2-z-2-where-x-y-z-Z-How-frequently-do-solutions-x-y-z-t-to-the-equation-

Question Number 2820 by Yozzis last updated on 27/Nov/15 $${We}\:{have}\:{the}\:{idea}\:{of}\:{Phythagorian}\:{triples} \\ $$$${as}\:{solutions}\:\left({x},{y},{z}\right)\:{to}\:{the}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={z}^{\mathrm{2}} \\ $$$${where}\:{x},{y},{z}\in\mathbb{Z}^{+} .\: \\ $$$${How}\:{frequently}\:{do}\:{solutions}\:\left({x},{y},{z},{t}\right)\:\:{to}\:{the}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}}…

lim-x-y-0-0-x-4-x-2-y-2-y-4-x-2-x-4-y-4-y-2-

Question Number 68354 by TawaTawa last updated on 09/Sep/19 $$\underset{{x},\mathrm{y}\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{4}} \:−\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{4}} }{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} \:+\:\mathrm{y}^{\mathrm{2}} } \\ $$ Commented by kaivan.ahmadi last…

Consider-the-equations-of-two-intersecting-straight-lines-ax-by-c-0-a-1-x-b-1-y-c-1-0-Find-the-equation-of-straight-line-passing-through-a-given-point-x-0-y-0-and-the-intersection-

Question Number 133885 by bemath last updated on 25/Feb/21 $$\:\mathrm{Consider}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{two} \\ $$$$\mathrm{intersecting}\:\mathrm{straight}\:\mathrm{lines} \\ $$$$\begin{cases}{{ax}+{by}+{c}=\mathrm{0}}\\{{a}_{\mathrm{1}} {x}+{b}_{\mathrm{1}} {y}+{c}_{\mathrm{1}} =\mathrm{0}}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{straight}\:\mathrm{line} \\ $$$$\mathrm{passing}\:\mathrm{through}\:\mathrm{a}\:\mathrm{given}\:\mathrm{point} \\ $$$$\left(\mathrm{x}_{\mathrm{0}} ,\mathrm{y}_{\mathrm{0}} \right)\:\mathrm{and}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{point}…

Question-68350

Question Number 68350 by mhmd last updated on 09/Sep/19 Commented by MJS last updated on 09/Sep/19 $$\left({x}−\mathrm{2cos}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\right)\left({x}−\mathrm{2cos}\:\frac{\mathrm{4}\pi}{\mathrm{7}}\right)\left({x}−\mathrm{cos}\:\frac{\mathrm{6}\pi}{\mathrm{7}}\right)=\mathrm{0} \\ $$$$\mathrm{approximating}\:\mathrm{leads}\:\mathrm{to} \\ $$$${x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}…

s-n-1-1-n-1-n-s-Dirichlet-eta-function-prove-that-s-1-2-1-s-s-

Question Number 2815 by prakash jain last updated on 28/Nov/15 $$\eta\left({s}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{{s}} }\:\mathrm{Dirichlet}\:\mathrm{eta}\:\mathrm{function} \\ $$$$\mathrm{prove}\:\mathrm{that} \\ $$$$\eta\left({s}\right)=\left(\mathrm{1}−\mathrm{2}^{\mathrm{1}−{s}} \right)\zeta\left({s}\right) \\ $$ Commented by prakash…

Question-68349

Question Number 68349 by peter frank last updated on 09/Sep/19 Answered by mr W last updated on 09/Sep/19 $${w}_{{new}} =\mathrm{1}.\mathrm{03}{w}\:\:\:\left(\mathrm{3\%}\:{more}={factor}\:\mathrm{1}.\mathrm{03}\right) \\ $$$${d}_{{new}} =\mathrm{0}.\mathrm{975}{d}\:\:\:\left(\mathrm{2}.\mathrm{5\%}\:{less}={factor}\:\mathrm{0}.\mathrm{975}\right) \\ $$$${t}_{{new}}…