Menu Close

Author: Tinku Tara

dx-x-2-1-x-4-1-

Question Number 133872 by MJS_new last updated on 24/Feb/21 $$\int\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)\sqrt{{x}^{\mathrm{4}} −\mathrm{1}}}=? \\ $$ Commented by MJS_new last updated on 24/Feb/21 $$\mathrm{I}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{but}\:\mathrm{maybe}\:\mathrm{there}'\mathrm{s}\:\mathrm{an}\:\mathrm{easier}\:\mathrm{path}… \\ $$ Commented…

A-man-gave-5-720-00-to-be-shared-among-his-son-and-three-daughters-If-each-of-the-daughter-s-share-is-3-4-of-the-son-s-share-how-much-did-the-son-receive-

Question Number 68336 by pete last updated on 09/Sep/19 $$\mathrm{A}\:\mathrm{man}\:\mathrm{gave}\:\$\mathrm{5},\mathrm{720}.\mathrm{00}\:\mathrm{to}\:\mathrm{be}\:\mathrm{shared}\:\mathrm{among} \\ $$$$\mathrm{his}\:\mathrm{son}\:\mathrm{and}\:\mathrm{three}\:\mathrm{daughters}.\:\mathrm{If}\:\mathrm{each}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{daughter}'\mathrm{s}\:\mathrm{share}\:\mathrm{is}\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{of}\:\mathrm{the}\:\mathrm{son}'\mathrm{s}\:\mathrm{share}, \\ $$$$\mathrm{how}\:\mathrm{much}\:\mathrm{did}\:\mathrm{the}\:\mathrm{son}\:\mathrm{receive}? \\ $$ Commented by Rasheed.Sindhi last updated on 09/Sep/19…

Prove-that-1-x-x-2-1-2x-3x-2-1-2-1-2-2-3x-3-4x-2-

Question Number 2795 by Rasheed Soomro last updated on 27/Nov/15 $${Prove}\:{that} \\ $$$$\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +…\right)\left(\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +…\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}.\mathrm{2}+\mathrm{2}.\mathrm{3}{x}+\mathrm{3}.\mathrm{4}{x}^{\mathrm{2}} +…\right) \\ $$ Answered by prakash jain last…

Differentiate-y-ln-tan-1-3x-2-

Question Number 68331 by Peculiar last updated on 08/Sep/19 $${Differentiate}\:{y}={ln}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}^{\mathrm{2}} \underset{} {\right)} \\ $$ Answered by MJS last updated on 08/Sep/19 $${y}={h}\left({g}\left({f}\left({x}\right)\right)\right) \\ $$$${y}'={h}'\left({g}\left({f}\left({x}\right)\right)\right)×{g}'\left({f}\left({x}\right)\right)×{f}'\left({x}\right)…

Knowing-that-e-i-1-1-i-Show-that-e-is-finite-That-is-show-the-following-is-true-S-x-R-x-lt-e-x-Where-S-is-the-solution-

Question Number 2791 by Filup last updated on 27/Nov/15 $$\mathrm{Knowing}\:\mathrm{that}\:{e}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{i}!}, \\ $$$$\mathrm{Show}\:\mathrm{that}\:{e}\:\mathrm{is}\:\mathrm{finite}. \\ $$$$ \\ $$$$\mathrm{That}\:\mathrm{is},\:\mathrm{show}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true}: \\ $$$${S}=\left\{\exists{x}\in\mathbb{R}:\mid{x}\mid<\infty,\:{e}={x}\right\} \\ $$$$\mathrm{Where}\:{S}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution} \\ $$ Commented…