Menu Close

Author: Tinku Tara

Without-using-induction-or-arithmatic-series-concept-prove-the-following-1-2-3-n-n-n-1-2-

Question Number 2762 by Rasheed Soomro last updated on 26/Nov/15 $${Without}\:{using}\:\underset{−} {{induction}}\:{o}\underset{−} {{r}\:\:{arithmatic}\:{series}−{concept}\:\:\:} \\ $$$$\:{prove}\:{the}\:{following}: \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{n}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$ Answered by prakash jain last updated…

find-n-1-x-n-sin-nx-n-

Question Number 133829 by metamorfose last updated on 24/Feb/21 $${find}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} {sin}\left({nx}\right)}{{n}}=…? \\ $$ Answered by Dwaipayan Shikari last updated on 24/Feb/21 $${log}\left(\mathrm{1}−{xe}^{{ix}} \right)={log}\left(\sqrt{\left(\mathrm{1}−{xcosx}\right)^{\mathrm{2}}…

find-lim-x-0-1-cos-x-cos-2-2x-cos-3-3x-cos-n-nx-x-2-

Question Number 133830 by metamorfose last updated on 24/Feb/21 $${find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−{cos}\left({x}\right){cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right){cos}^{\mathrm{3}} \left(\mathrm{3}{x}\right)…{cos}^{{n}} \left({nx}\right)}{{x}^{\mathrm{2}} }=…? \\ $$ Answered by EDWIN88 last updated on 24/Feb/21 $$\:\underset{{x}\rightarrow\mathrm{0}}…

A-circle-is-divided-into-two-equal-parts-By-An-arc-with-center-on-the-circle-Determine-a-The-length-of-the-arc-b-The-ratio-in-which-the-arc-divides-

Question Number 68289 by Rasheed.Sindhi last updated on 08/Sep/19 $$\mathrm{A}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{into}\:\mathrm{two}\:\mathrm{equal}\:\mathrm{parts} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{By} \\ $$$$\:\mathrm{An}\:\mathrm{arc}\:\mathrm{with}\:\mathrm{center}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circle}. \\ $$$$\mathcal{D}{etermine} \\ $$$$\:\:\left({a}\right)\:{The}\:{length}\:{of}\:{the}\:{arc} \\ $$$$\:\:\left({b}\right){The}\:{ratio}\:{in}\:{which}\:{the}\:{arc} \\ $$$$\:\:\:\:\:\:\:\:{divides}\:{the}\:{diameter}\: \\ $$$$\:\:\:\:\:\:\:\:{meeting}\:{the}\:{center}\:{of}\:{the}\:{arc}. \\…

There-are-5-positive-numbers-and-6-negative-numbers-Three-numbers-are-chosen-at-random-and-multiplied-The-probability-that-the-product-being-a-negative-number-is-a-17-33-b-11-34-

Question Number 133821 by bramlexs22 last updated on 24/Feb/21 $$\mathrm{There}\:\mathrm{are}\:\mathrm{5}\:\mathrm{positive}\:\mathrm{numbers}\: \\ $$$$\mathrm{and}\:\mathrm{6}\:\mathrm{negative}\:\mathrm{numbers}.\:\mathrm{Three}\: \\ $$$$\mathrm{numbers}\:\mathrm{are}\:\mathrm{chosen}\:\mathrm{at}\:\mathrm{random} \\ $$$$\mathrm{and}\:\mathrm{multiplied}\:.\:\mathrm{The}\:\mathrm{probability} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{product}\:\mathrm{being}\:\mathrm{a}\:\mathrm{negative} \\ $$$$\mathrm{number}\:\mathrm{is}\: \\ $$$$\left(\mathrm{a}\right)\:\frac{\mathrm{17}}{\mathrm{33}}\:\:\:\left(\mathrm{b}\right)\:\frac{\mathrm{11}}{\mathrm{34}}\:\left(\mathrm{c}\right)\:\frac{\mathrm{16}}{\mathrm{33}}\:\:\:\left(\mathrm{d}\right)\:\frac{\mathrm{16}}{\mathrm{35}} \\ $$ Answered…